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A methodology is presented for the optirnal design of flvod conirol volumes in a multireservoir system
with one downstream critical section. The design is optimal in the sense that the objective function
attempts to minimize the penalties associated with providing the flood protection. Moreover, the method
explicitly considers a set of probability constraints on the occurrence of floods. The proposed calculation
scheme is easily applied to almost any type of muitireservoir system. The methodology is applied to the
problem of determining the flood control volumes to be provided in a hydropower system of eight
reservoirs on the Parana river in Brazil. In that case the objective function consists of minimizing the

total firm energy loss.

INTRODUCTION

Sizing multireservoir systems is a difficult task due to the
complex relationship between the decision variables (reservoir
capacities) and the performance of the system. This per-
formance is affected, for instance, by the stochastic nature of
future inflows, the rules adopted for the system operation,
complex cost and benefit functions, and noncommensurable
objectives. This problem can be classified as a stochastic, mul-
tivariate, nonlinear, and multiobjective optimization problem.

Several optimization models based on different approxi-
mations for this problem have been proposed in the literature.
An important family is the class of implicitly stochastic
models, where the uncertainties in the inflows are taken into
account by considering a large set of equally likely inflow
sequences. The basic pitfall of this method is that the resulting
size of the constraint set is~proportional to the number of
considered inflow sequences [Stedinger et al., 1983). Certainly
in flood control problems the number of constraints becomes
prohibitive due to the small time base one has to use.

Usual approaches to circunvent this difficulty are to use
only the average inflow sequence [Dorfinan, 1962] or the
“critical periods” [ Hall et al., 1969] or yield models [Loucks et
al, 19811

Marién [1984] derived theoretical results concerning regula-
tion of multireservoir flood control system and showed how
these findings can be used to dramatically reduce the number
of constraints of a stochastic madel, without any kind of ap-
proximation. The results of Marién are described in the en-
suing text.

Assume a flood occurs in a river section P just downstream
of a reservoir R; whenever the flow exceeds a critical value Q.
An adaptation of Rippl's [1983] method allows one to define a
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feasible region for the flood control volume K, such that no
flooding occurs for a given inflow sequence g¢,(1), g,(2), -+,
q,{D) as

=g

K, > maximum 3 (q,(1) — Q) (1)
1SSt D (my
0< K, <K, 2

where K, is a maximum permitted flood control volume.

Marién [1984] generalized this result for the case when
there are several flood control volumes upstream of R,. As-
suming instantaneous flow propagation, Marién found a cor-
responding feasible region for the vector K =(K,, K;,*--,
K,) of flood control volumes of a so-called normal (sse later
on) x reservoir system given by the contraints

Y K, = b, = maximum mzl:" (( Y q}{t)) - Q) 3)

Jeu 1SS D 1=t Jeu
Yuel

0<K,<K, Jj=L-n @

where

q; local inflow in R;{corresponding to the catchment be-
tween site j and the immedijately upstream sites);

u  asubset of the set of integers {1, 2, ---, n};

U class of all subsets u such that the set of all Ryfor i s u
forms a so-called partial reservoir system (see later on).

According to the definitions in the work by Marién [1984],
a multireservoit system is normal if and only if for every reser-
voir R, except for R, (the most downstream site), there exists
one and only one reservoir immediately downstream of R,
Any set A of reservoirs R, for i € u forms a partial reservoir
system of the original system if R, belongs to A and if the
reservoirs of A on their own form a normal reservoir system.
For example, in Figure 1, taken from Marién, the class U of
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Rg
An example of a four-reservoir system.

Fig. L.

all subsets u consists of the subsets {1}, {1, 2}, {1, 3}, {1, 2, 3},
{1, 3, 4}, and {1, 2, 3, 4}, while examples of subsets not be-
longing to U are {1, 4}, {1, 2, 4}, {2, 3}, and {2, 3, 4}.

The constraints (3) form the so-called controllability con-
ditions (CC), Clearly, there are as many CC as there are ele-
ments in U, Marién [1984] shows that the CC can be easily
calculated through the following recursive equation:

Z ) = max [o, Za—-D-Q+ ¥ q,(:)] (5)

Jew

=120, D
Z0)=0 6
b, —maxZ(t) J (")

Marién [1984] also shows how the CC can be casﬂy gener-
alized to systems with delayed instead of instantaneous flow
propagation,

The model developed in this contribution adds two original
features to the CC. The first element consists of using an
objective function together with the CC to find the optimal
K* vector using linear programming. Second, an algerithm is
given to calculate the optimal K* vector associated with a
given probability of flooding in P. This algorithm translates
mathematically the trade-off between the value of the objec-
tive function and the flooding risk: a smaller return period of
flooding (i.e., a larger flooding risk) corresponds to a better
value of the objective function. As far as the authors are
aware, this is the first approach to solve flood control design
problems which aliows to optimize system performance while
taking into account the full details of the inflow process as
well as probabilistic constraints on flood frequency.

Finally, the methodology is applied to multxreservmr power
systems. Whenever any of these reservoirs is prevented from
filling completely due to flood control cc;ynsfraints, the firm
power production of the system decreases, In predominantly
hydroelectric systems, lack of water in thé reservoirs during
dry spells usually means energy shortage, rather than just
higher generating costs. In this context, a new cost function
related to firm power loss is derived and applied to the power
system of the Parana river. This is a complex.system of eight
reservoirs partially in parallel and partially m;tandem Hence
this example will itlustrate the fact that the proposed method-
ology can be applied to almost any conﬁgurat:on of multires-
ervoir systems. An earlier version of thig méthodology was
presented at the Fourth International Hydroiogy Symposium
[Kelman et al., 1985b].

LINEAR PROGRAMMING FORMULATION

Consider again a normal » reservoir system R, R, ', R,
with a river section P, situated just downstream of the most

7 downnlream reservoir R,. Flooding occurq wl]enever the flow
.-oxceeds g critical value Q. Let § be the’; iset] of all possible
) I%&Whlch flood protection has to be.provided Each

TR 2k
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Ik
storm! g conmsrs of n inflow sequences g,%(f) for ¢ = 1
"r n) where D is the common duration of ll the
In practloe, D is the duration of the longest storm of
the s tg S and one adds zero inflows to the data of the other

&s to obtain| a common duration for ail the stormls con-
sxder%d '
Thé,lnght ham;l side of constraint (3} for any storm ses

and or any u € U is by definition given by

ll b(¢) = maximum ‘i‘"m (( Y q J'(z)) - Q) |‘ @
|

' 1E=ZsED oy Jau
lcan be calculated using (5}7), With this notaurm the
total {n of CC cdn be written as , [
|
|
|

Y K,=bfs) VseS Vuel

Jeu

®

How:ever, for a given u € U, it is possible to find amo‘pg the
storms s € § the,one which will provide the largest vajue for
the tight-hand sides b,(s) for s & S. Clearly, all other storms
will Egncrate redundant constraints, Hencc the set of con-
strai #(9) may l?e limited to

ill JZK,ab,,[s W] VYuelU

[ (10)
wher s,(u,\ is thj: storm s for which b {s) is the Iargcst! Note
that, trp general, different storms may create the largest bn(c) for
diﬂ‘el[ent ue U, $ctua!ly. each s,(u) is the first storm in the set
of m storms of S‘ when those are written in a partlcular order
ass0g z}tcd with the partial reservoir system w. Each of these
ordefings

I

{11

J E $q(t) s, (), -
is defined by the relations
| ‘F b,[ )] = b[sy()] = -+~ 2: b, [sn{w)] (12)

provi ided that when b(s"} and b (s") ate equal, the ordfr of '
and $lis arbltrary

Wi ?n one assymes that the costs for providing certam flood
contjol vqlume;‘ is proportional to these volumes, then a
{ineay pptimizatirn problem (LP} can be formulated as f

“+ $ufu)

ta

J=n

i (13)

i E { minimize F(K) = } «K,
f K J=1
i |
subj li to the constraints (4) and (10). The idea of re;fnlacmg
the c¢onstraints (9) by the constraints (10} makes solupon of

this LII’ feasible, geven for a very large number of storms in S.

Hi ugedcd one can replace (4) with a more general set of
| ‘constraints which can, for example, represent the limi-
on the figod storage provisions lmposed by oth#r pur-
f the reservoir system. In the works by Windsor|[1975
t is shown how such limitations can be formulated.

INTROD CTION OF PROBABILITY CONSTRAINTS }
nsecond oblem considered in this paper conSIStS of
é an optl al solution of (13) such that the reFultmg
! return peﬁlod of flooding (i.e., when the flood qontrol
i Qs are mstallcd) is a given value of say, for example, T
Suppose for a moment one has an historical rccoFd of y
of data, containing m storms, forming the storm set §.
[ these m storms do not fulfill the CC and
the numbdr of years y is very large, then p/m’ is[a very
dtimate o the mean return period: of flooding. Hence to
'design ofia mean return period of T vears, one chooses
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m' equal to the largest integer smaller than y/T. To have an
optimal design of mean return period of T years, ane solves
the LP with objective function (13} subject to the constraints
(4) and (9) where the set of storms § is replaced by the set §™,
obtained from § by deleting m’ storms in such a way that the
reduction of the optimum value of the objective function
F(K*) is maximized. The set $™ is obtained by constructing §*
from S*~!, successively for k=1, :--, ', starting from S°,
which is the complete set S.

To construct ' starting from §, one solves the LP (13) with
the constraint (4} and (9), with (9) replaced by (10} as explained
before. The problem then is to find the storm s € § which is
such that when (13}, (4}, and (9) are solved with S replaced by
§' = §/{s}, the reduction of the optimal I.P objective function
value F(K*) is maximized. Since (9) is equivalent to (10), only
the storm, belonging to the subset

C = {s,(u) for all u e U} (14)

can provide binding constraints to the LP (13), (4), and (9) or
{10}. Hence one only needs to consider the storms of C as
possible candidates for elimination. Moreover, when a storm
s € C is climinated, the change in objective function is given
by

OF(K)
0b () ke

where U(s} is the subset of partial reservoir systems ue U
which are such that 5,(4) = s, ie., those u e U for which s is
the storm which gives the highest values of bJfs), and
EF(K)/6h (s)x, the partial derivative of F(K) with respect 1o
bfs) at the point K*, given by dual variable value for the
constraint (10} associated with « from the LP solution.

The obvious choice is then to exclude from § the storm
s € C which gives the most negative value for JF(s). After
obtaining S§* as S/{s} in this way, the ordering (}1) for all
u & U are adjusted to the fact that storm § is eliminated. To
obtain §2, the same procedure is repeated with S replaced by
§! and S replaced by §% After a7’ such iterations one obtains
5™, Hence one only needs to consider the first m’ + 1 elements
of the orderings (11), since at most s’ storms are eliminated
for any given .

With the proposed algorithm one needs to solve m' LPs,
where the kth LP is defined by (13), (4), and (10), where s,(u) is
the storm se5* ! for which b(s) is the largest. The only differ-
ence between two successive LPs is that some right-hand sides
of the constraints (10) are changed. In such a case it is rec-
ommendable to use the duatl simplex method, since one can
then obtain the solution of the next LP from the solution of
the previous LF by only very few simplex iterations.

F(sy= Y {b,[s,{t)] — b,E51} (15)

u e W

Use OF SYNTHETIC FLOW SEQUENCES

Normally, the long data sets required by the method pro-
posed above are not available. Instead, one uses very long
synthetically generated multisite flow sequences which have
the same statistical properties as the real flows as far as storm
frequencies and storm magnitudes are concerned.

The problem of selecting the storms in such a long synthetic
data record can be easily solved by premising that when the
previous storm has ended, the next storm s starts in the first
period t, in which the total inflow given by

Z q,{to)
=1

Ui
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exceeds the critical flow Q. The same storm s ends in the first
period ¢ which is such that there exists a ¢ fulfilling the
conditions

Le<t'st” (16)
i G HSQ  t=t, e, 0 an
i=1
LRk (Q - q‘:(t)) (19)
=1 IE17] i=1

Clearly, this procedure for extracting the storms guarantees
empty flood storage capacity at the end of each storm. It does
not necessarily give the shortest possible storms, but this is of
no importance here. Also, this procedure disregards any extra
empty storage available in multiple purpose reservoirs at the
beginning of each storm due to water consumption during the
dry spell. In this case the return period of flooding can be
actually greater than y/m’.

When in the studied river basin one can determine a definite
flood season in each year, then the above storm selection pro-
cedure is not needed. Each simulated flood season then corre-
sponds te just one storm, which extends from the first to the
tast period of the corresponding flood season. The return
period of flooding is still given by y/m’. This corresponds to
the classical formula that the mean return period is the inverse
of the probability of flooding in one flood season, since this
probability is estimated as m'/m, where m is equal 10 y in this
case, Again, extra empty storage at the beginmng of the flood
season is not taken into account by the procedure and there-
fore the actual obtained return period can be greater than

’

yinm'.
The right choice of y is not discussed here. It is a classical

problem of experimental design in statistics.

The proposed methodology can be easily extended to the
case were nonnegligible time delays exist for the waters flow-
ing from one reservoir to another. The only adjustment con-
sists of the right-hand side of (8), according to the directives
given in the work by Morién [1934].

A Cost FUuNCTION RELATED TO FLOOD VOLUMES
N HYDROPOWER SYSTEMS

The allocation of flood control volumes in the reservoirs of
a power production system conflicts with the requirements of
power generation: during the rainy season, floed protection is
aided by low reservoirs levels and energy production benefits
from full reservoirs. Hence it may be useful to calculate the
flood volumes in such a way that the loss of firm energy is
minimized, while keeping the flood risk below a preestablished
level [Kelman et al., 1982]. Firm energy can be defined as the
maximum energy a hydro system can continuously provide if
the worst historical drought happens again, given initial reser-
voir storage levels which account for flood storage.

During the flood season, there are always enough river flow
to meet the firm energy requirement. However, if the reser-
voirs are not filled completely at the end of the flood season,
due to the flood storage provisions, a decrease in firm energy
may result later on, during the dry season. Hence one could
define the cost function as the firm energy resulting from the
simutation of the operation of the hydrosystem for the worst
historical drought, with initial storages imposed by the flood
storage provisions. For large systems with substantial carry
over, the duration of the worst historical drought can last

(%)
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several years. In this case, the simulation will use storage pro-
visions also as upperbounds for storage during subsequent
flood seasons. In any case this would result in a firm energy
given by Lic, — K,, ¢, — K,, -, ¢, — K,), where ¢, is the
capacity of reservoir i (only consndermg storages above mini-
mum power pool) and K is that reservoir’s flood storage allo-
cation. For a given set of values K, K,, -, K, a value of L
could be obtained through a simuiation using the inflows of
the worst historical drought.

The allocation of flood storage that gives the greatest value
of firm energy is by no means obvious. For tandem systems
there is a general trend to allocate flood storage in down-
stream reservoirs because water stored upstream will eventual-
Iy flow to lower reservoirs, There are, however, some excep-
tion. Suppose for example that two in tandem reservoirs are
very differently shaped: flood storage allocated to reservoir 1
(downstream) causes substantial loss of head, whereas practi-
cally no loss occurs in reservoir 2 (upstream). In this case, it
can be a bad choice to allocate flood storage to the reservoir
1, because the minimum power production (firm energy) can
decrease, at least during the beginning of the worst historical
drought. Furthermore, there is no simple rule for parallel sys-
tems,

Because the construction of the objective function through
successive simulations is quite cumbersome, it was decided to
use the concept of system's energy [Arvenitids and Rosing,
1970; Terry et al., 1986]. Suppose that the state of a n reser-
voir system at an instant ¢ is defined as the vector «(f) = (v,(t),

-+, u,(1), where vff) is the stored water volume (above mini-
mum power pool) in reservoir | at instant ¢, With some ap-
proximation, this state can be described by a univariate vari-
able called the stored energy in the system and denoted by
g(v(r)). This stored energy is given by the total energy that can
be generated with this system in this state, supposing no future
inflows and a reasonable rule for emptying the reservoirs, As-
suming that there is a monotonic relationship between firm
energy and the system’s stored energy for all reservoirs at the
flood control pool level, one can maximize the second quan-
tity rather than the first one. Besides, maximizing the system’s
stored energy is a reasonable goal in itself in hydrothermal
systems which are predominanily hydro because the thermal
units are base loaded depending on the system's stored energy,
as defined in the ensuing text [Terry er al, 1986]. That is,
creation of flood control storage results not only on gener-
ation expansion cosits but also on operating costs.

An approximation for the stored energy is given by

max min
Z Z Pe, (b"'ﬂ"‘)ci

f=i j=1

glc) = (19)
where P = 1 for j = i; P,;= 1 i j is a reservoir downstream
from i; and 0 in all other cases; h,™* is the head when v {6) =

¢;; ™" js the head when v{f) = 0; and ¢ is the efficiency of
the jth power plant,

Note that as this approximation uses mean heads it is more
related to situations where the relationship between head and
storage can be approximated by a linear curve at least in the
zone between ™" and h™*,

In general, the stored energy at the end of the flood season,
which is the quantity to be maximized, will be given by

h
g(e--K)= z z P.e, (—ii"—h-'——) e, —K) (20

im1 jm=1

h , the head in reservoir j when v 1) = ¢, — K,
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I it i assumed that & , is given as a function of K in a |incar
way, which is consistent with the approximation used fc)r the
stored nergy (eq atlon (19)),

f ! g =h"™ —aK,

then (20) can be v-fritten as (with by = ™" 4 iy

I -

‘ é(c_K)"“l Z Y Puefb ™ —a K+ k"™ Ke,~ K
Jot

! % " " H L]
I 33 5 renca-3 3 parnes
|

1)

NS = =1 j=1

!
1'- 2

i n
|
[ i=1 §

2

1

n n
ueJaJKJC:*"Zl jZI P UeJaJKJKi)

(22)

ThY first term in the right-hand side of (22) can be omitted
(it is /ajconstant)] After interchanging the indexes i and f and
the s %mauon ign of the third term of (22), the resultmg
objec 1efunctloi

to be maximized is

I

Nt
i
1
!
F

T
z Z‘( Pyeh™ — (23)

i=1 J“l

ailP e, + Pyea KK,

-

if )1‘ *is suﬁ'ic:ently greater than a,K , the nonlinear terms of
{23) ap be easily considered through an iterative optimization
procjd,ure, where in each iteration one minimizes a linéar ob-
jecti lfuncuon rrpresennng the loss of stored energy, given by

"

/ Y wK, (24)
i1

|

|

l
Z (Pyey* + alPyec; ~ PyeaK,\°) (25)
J"‘

whel‘ |the K,° e jJ= 1, --+, n are given by the optimal sélution

of th previous 1ﬁeratlon

I NuMmERICAL EXAMPLE

c algorithm was applied to the probiem of determining
$od contrél volumes to be provided during ther flood
| in a system of eight hydropower reservoirs ‘of the
Par na Basin (31?5 000 km?)} in the southeast of Brazil (Figure
'this study 1000 years were simulated (y = m = 1000) and
the heqmrcd return period of flooding was 25 years, so the
nu 'Isr of stom?s to be eliminated is given by m' as

} jr w = YT = 1000/25 = 40 3

The flows were obtained using a multivariate daily s Stream-
flow generator escribed elsewhere [see Kelman et al,, 1985a].
Forithis large river basin the use of a daily time base for flood
stud%[s is quite pdequate Whenever needed, the delayq of the
reservoir releases were taken into account. |

TLe critical flow in P was 12,000 m3/s, In natural conchtlons
this fliow has a return period of 1.17 years,

It ﬁ not concéivable that the flood control storage ca,n be as
larg‘ s the total reservoir capacity, since some water 1‘pust be
stored for peakifg capacity. In this numerical exercise almﬁcral
for the flood storages K, equal to 0.4 ¢, were afoptcd.
ill also gyarantee that (21) well represents the variation
heads. If this limitation was not adopted a nonlmear
f:ve functign would be necessary., r‘

Table 1 shows imnortant narameters of the reservoird

1
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Fig. 2. The studied teservoir system.,

Table 2 shows the optimal flood control volumes obtained
at cach iteration. At each iteration the algorithm given by (17)
to adjust the nonlinearity of the objective function had to be
used only once. Figure 3 shows the relation between the loss
of energy (i.c., glc) — g{c — K)) and the probability of flooding
in one flood season (ie,, the inverse of the return period). The
last row of Table 2 aiso contains the coefficients &, of (25) for

K 10 equal to zero (thse coefficients change at most 5% when
the K ,° are equal to K, there maximum value),

The successive solutions of Table 2 consist of putting a
certain amount of total flood storage in those reservoirs which
have the lowest coefficient &, This total flood storage is given
by the CC (10} for u given by the set {1, 2,---, 8}. For
example, the last solution for a probability of flooding of 0.04
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| '
TABLE 1. Reservoirs’iﬁ:ameters ! ‘
Ry L Ry S, R, Re || Ryal Re. R, M. | R,
Solteira Simio Iturnbiara Emborcagdo ||| Vermetha Marimbondo Moraes fumas
: | i
10° m 12.866 5,580 12.454 13.015 ' | 5,169 5.260 2.205 I 17.21
]{}, 10° m3 5.146 2,232 4,982 5,206 ;H 2.068: 2,104 0.882 ! 6.88
e 0.89 0.89 0.89 088 | 088 0.88 0.89 0.89
h"“"‘, m 46.88 7297 84.40 137.74 i 5536 | 63.26 43.16 195,03
h’“'“,m 32.81 62.41 60.47 91.23 48539 42,88 32.48 178.33
a, m10° m? 0.88 1.52 1.25 2.11 ] 1.64 | 2.32 4.00 ! 0.60
(- |
‘ i | % |
is simply given by providing the maximum possible amount of  becomes 12.866 x 10° m?, the b/ of R, becomes 43 16 m,
flood storage in the reservoirs R,, R,, and Rj, exactly those etc.)while keeping the locations of the reservoirs and aﬁso the

reservoirs which have the lowest o, and then an additional
flood storage of 0.376 x 10° m® in R, the reservoir with the
fourth lowest «,.

This solution is simple because constraint (10) is binding
only for u given by the set {1, 2, - - , 8}, However, this is not a
general feature of the problem, To illustrate this, the example
was altered artificially by mterchangmg alf the data (c, B, e,
™, and h,™") of reservoir R, with those of réservoir R, (ie,
the capacity of R, becomes 2.205 x 10° m? while for R, it

TABLE 2. Optihal Flood Controt \a'olunﬁl

ata unchanged. Clearly, this will change all the «,
whose new values are given at the second row of Table 3. This
table ﬁﬂso contaﬁns the solution of this altered system for a
prob blhty equal to zero. If these solutions were of the same
simple type as for the original system then it would consist of
prov{Flng as muj:h flood storage as possible sw:cessn.rel;J| in the
reseryoirs Ry, Ry, Rg, Ry, Ry, R;, Rg, and R, (i.e, in the order
of in pasing a;). However, the solution of the altered sy?tem is

not ofithis simple type, It provides some flood storage‘ in R,
|
' |

at Each Iteration (10° m?)

|
Pmbablli[y R; Rz R3 R4 I E Rg Rﬁ R-; Rg
0.0000 5.146 2.232 4,982 2,365 ! 2.068 2.104 0.862 | 6.887
0.0010 5.146 2.232 4.982 0.000 | 2,068 2,104 0.082 13,044
0.0020 5.146 2.232 4,982 0.000 2.063 2.104 0.882 | 2.904
0.0030 5.146 2.232 4,502 0.000- 2.068 2,104 0.882 | 1.026
0.0040 5.146 2.232 4.982 0.000 2.068 2.104 0.862 | 0.902
0.0050 5,146 2.232 4.982 0.000 2.068 2.104 0.882 0.020
0.0060 5.146 2,232 4.982 0.000, 2.068 2.104 0.634 0.000
0.0070 5.146 2.232 4.569 0.000) 2.068 2,104 0.000  0.000
0.0080 5.146 2.232 3.654 0.000 2.g§8 2.104 0.000 | 0.000
0.0090 5.146 2.232 2.973 0.000 2.068 2.104 0.000 | 0.000
0.0100 5.146 2.232 2.604 0.000 | 2.068 2.104 0.000 | 0.000
0.0110 5.146 2.232 2.466 0.000 ., 2.068 2.104 0.000 0.000
0.0120 5.146 2.232 2.412 0.000 | 2.068 2.104 0.000 0.000
0.0130 5.146 2.232 2.028 0.000¢ || 2.068 2,104 0.000 0.000
0.0140 5.146 2.232 1.939 0.000° 2.068 2.104 0.000 0.000
0.0150 5.146 2232 1.928 0.000 2.068 2.104 0.000 0.000
0,0160 5.146 2.232 1.487 0.000! 2.068 2.104 0.000 0.000
0.0170 5.146 2.232 1,347 0.000! 2.068 2.104 0.000 0.000
0.0180 5.146 2.232 1.187 0.000, 2.068 2,104 0,000 0.000
0.0190 5.146 2.232 1.087 0.000° 2.068 2.104 © 0,000 0,000
0.0200 5.146 2.232 1.044 0.000 2.0 2,104 0.000 0.000
0.0210 5.146 2.232 0.860 0.000 2. 2.104 0.000 0.000
0.0220 5.146 2.232 0.765 0.000 2.068 2,104 0.000 1 0.000
0.0230 5.146 2.232 0.691 0.000 | ; 2, 2.104 . 0.000 - 0.000
0.0240 5.146 2232 0.170 0.000 | 2.068 2.104 0.000 . 0.000
0.0250 5.146 2.232 0.000 0.000 || 2. 2.09 0.000 1 0.000
0.0260 5.146 2232 . 0.000 0.000/ 2,068 1.987 0.000 0.000
0.0270 5.146 2232 0.000 0.000, 2, 1,929 0.000 0.000
0.0280 5.146 2232 - | 0.000 0.000 2. 1.866 © 0,000 0.000
0.0290 5.146 2.232 I 0.000 0.000 2, 1.852 0.000 0.000
0.0300 5.146 2232 I 0.000 0.000' 2. 1,290 0,000 0.000
0.0310 5.146 2.232 o 0.000 0.000. 2.068 1.128 © 0.000 0.000
0,0320 5.146 2232 . 0.000 0.000 2. 0.509 + 0.000 0.000
0.0330 5.146 2.232 0.000 0.000 2.0 0.877 0.000 0.000
0.0340 5.146 2.232 0.000 0.000" 2.068 0.857 0,000 0.000
0.0350 5.146 2,232 0.000 0.000 | 2.028 0.795 0.000 1 0.000
0.0360 5.146 2,232 0.000 0.000]! 2.068 0.663 0.000 0.000
0.0370 5,146 2,232 0.000 0.000. 2.32& 0.576 - 0.000 0.000
0.0380 5.146 2,232 0.000 0.000' 2.068 0.544 . 0,000 0.000
0.0390 - 5.146 2.232 o 0.000 0,000 2.023 0.525 . 0,000 0.000
0.0400 5.146 2.232 i 0.000 0.000] 2 0.376 0.000 0.000
%, 0.17 0.32 ©0.47 0.74 0.2 0.41 ; 0.53 0.66
kWh/m? ] .
— ;
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Fig. 3. The loss of stored energy as a function of the flooding probability.
without using all the possible flood storage in R, although ug NotaTION

is smaller than ¢,. Examining this solution more closely, it
was found that this was due to the limitations on the distri-
bution of the total needed flood storage, imposed by CC (10}
for u given by the set {1, 2, 3, 4, 5, 6}. This example shows how
CC can play an important role in determining the allocated
flood storages.

CONCLUSIONS

The presented methodology seems useful for designing or
determining flood control volumes in a multiveservoir system.
It becomes possible to determine optimized volumes in an LP
framework which takes into account the return period of
downstream flooding. The availability of a model to generate
synthetic multisite streamflow sequences with the emphasis on
high flows is essential to the methodology.

The extension of the methodology to nonlinear objective
functions seems possible. In the case of a Jinear objective func-
tion the dual simplex method is a special optimization routine
which exploits the feature that the next optimization problem
only differs from the previous one only by relaxing some con-
traints of (10). A possible subject of future research, is the
construction and the use of such special routines in the case of
nonlinear objective functions.
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K*

gradient of the head-storage relationship for
reservoir R,

lower bound for the sum of flood control storages of
reservoirs belonging to subset u (right-hand side

of equation (3j}.

set of the storms which provide the binding constraints.
capacity above minimum power pool of reservoir j.
vector of e j=1, -, n

duration of a inflow sequence.

efficiency of the jth power plant.

objective function.

stored energy in the system.

the head in reservoir R, when v/ff) = ¢,

the head in reservoir R, when vf1) =0,

hjmax + hjmlﬂ-

reservoir index,

reservoir index.

vector of fiood control volumes.

flood control volume in reservoir R,

maximum permitted flood control storage volume in
reservoir R,

optimal vector of flood control volumes.

TABLE 3. The Solution of the Altered System for a Flood Probability of Zero

R, R, R, R, R Ry Ry Ry
K, 10° m* 0.882 2.232 4.982 3.167 2.066 2.104 5.146 6.085
o;, kKWih/m? .45 Q.31 0.47 0.4 0.29 0.44 0.47 0.66
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L firm energy.
m  number of storms in 8,
m' number of storms in § that do not fulfill the CC.
n  number of reservoirs.
P river section just downstream of reservoir R,.
P, indicator of topology.
Q critical value of flow in river section P.
local inflow in R, (corresponding to the catchment
between site § and the immediately upstream sites)
during period ¢.
local inflow in R, during period ¢ for sequence s.
R, ith reservoir.
S set of all possible storms.
S* set of storms obtained from § by deleting & storms.
§ sequence index.
the storm s for which b.{s) is the kth largest
T return period of flooding.
t time index. (
U the class of all subsets u such that the set of all R,
for ieu form a so-called partial reservoir system,
i a subset of the set of integers {1, 2, -+, n}.
ot} vector of pft),i=1,--, n
v{t) stored water above minimum power pool in
reservoir i at instant 1.
y number of years corresponding to the storm set S.
o, Jjih cost coefficient, corresponding to reservoir R,
JF(s) change in the objective function when storm s is
eliminated.
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