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STATISTICAL APPROACH TO FLOODS

ABSTRACT

The usual approach to the calculation of z(T'), the annual maximum
daily streamflow associated with recurrence interval T, is to fit a probability
distribution to a set of observations of annual maxima. The choice of the
probability distribution is often based on asymptotic results. We investigate
this model selection criterion through evaluation of the errors in estimating
of (T} for a Markovian daily flow stochastic process.

The design of spillways or flood control sterage requires the complete
calculation of the T fload hydrograph, rather than just the peak value. Ques-
tions regarding the evolution of reservoir storage could be solved if a large
number of daily streamflow sequences were available to be used in the eval-
uation of the frequency of failure of each tentative design. The utility of
stochastic daily streamflow models is discussed, particularly the question of
how to reduce the computer time necessary to generate a large number of
synthetic daily sequences.

1. INTRODUCTION

It is uzual to invelve hydrologists in the design of hydraulic structures
which are subjected to streamflows up to the critical event called the “de-
sign flood”. When the (failure of the structure can have catastrophic con-
sequences, the design ficod is often calculated through a hydrometeorologi-
cal approach, which provides an upper bound to observed storms with the
purpose of defining an event that “with all likelihcod” will never happen.
Descriptions of this methodology for applications in temperate regions are
found in the literature (for example, WMO, 1973), but for tropical regions

1 Flectrical Energy Research Center-—{CEPEL), Caixa Postal 2754~-CEP

20001-Rio de Janeiro, Brazil
193

1L B. MacNeill and G. J. Umphrey (eds.), Stochastic Hydrology, 193-225.
© 1987 by D. Reidel Publishing Company.



194 JERSON KELMAN

there are only a limited number of references (Myers, 1981).

The design flood can also be calculated through the flood frequency
analysis, which is the subject of this paper. Flood frequency analysis is a
set of procedures that make use of statistics for a.331gn1ng the exceedance
probability to each flood event.

In some engineering problems one needs only to define the peak flow
z(T), as for example when designing a levee. Most of the work done in
statistics deals with this kind of problem; namely, how to calculate the flow
that will be exceeded in any year with probability p. For major hydraulic
structures, T is sometimes chosen to be as large as 10,000 years. The usual
approach to caleulation of z(T') is to fit a probab1hty distribution F(:) to
a set of observations of m annual maxima {®;, Zs,...,%} and obfain an
estimate, £{T).

Several questions may be raised in connection with this approach:

{2) What is the population probability distribution from which {z;,2s,...,

Tm} Was sampled?

(b) What is the probability distribution associated with the smallest mean

square error (or mean absolute error) for the estimator X(T')?

{c} How large is this error?
(d) What is the probability of under-designing, such that P{X (T) < z(T)}?

The answer to questions (a) and (b) may be different because the errors
in the parameters of the population distribution may be high. There are
several results available in the literature almed at answering questions {c)
and {d} when the population distribution is known; that is, when the esti-
mation procedure is the only source of error {for example, Kottegoda, 1980).
However, results are not easily obtained when the population distributicn is
unknown.

The first asymptotic distribution of extreme value theory is often used
as an approximation for the unknown population distribution. One of the
main results of this theory states that if the random variables ¥; are inde-
pendent with a common distribution of exponential type, then the maximum
defined as X == max {¥3, ¥z,...,¥,}, will have the following large sample
probability distribution (Gumbel, 1958):

Jim F(z) = exp [—exp(~T(z — p))] . (1)

This asymptotic distribution, sometimes referred to as the Gumbel distri-
bution, is valid even when the random variables ¥; are weakly dependent,
which is the case when the correlation between Y; and Y;; goes to zero
with increasing & (Cramer and Leadbetter, 1967). However, there are prob-
ability distributions for ¥ with either asymptotic distribution for X, or with
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distributions associated with the second (also called Fréchet) or third (also
called Weibull) asymptotic distribution. s

Since most probability distributions used in hydrology are of exponential
type, such as the normal, the log-normal and the gamma, it is understand-
able why the Gumbel distribution seems to be a suitable approximation to
the unknown population distribution of X. The ferm “approximation® is
introduced because equation (1) is used for finite n (up to 365) and also
because the daily flows Y; are not identically distributed. The adequacy of
this approximation will be discussed in Section 2.

Anocther frequently used approach to the selection of an approximate
probability distribution for X, not necessarily confined to the set of asymp-
totic distributions, is to examine a number of candidate distributions and
pick the one that most closely fits the data. Obviously, the goodness-of-fit

" measnre has to take into account the number of parameters of each distri-

bution. .

Comparative studies ha.ve besn made with data from a great number
of streamflow gauges with a view to obta.lmng a standardized distribution
of the annual maximum. In the United States the Water Resources Coun-
cil (USWRC, 1967) suggested the use of the log-Pearson III distribution
and later furnished further gmidelines regarding the estimation procedure
(USWRC, 1977). This recommendation created a great deal of controversy.
It has been noted by Wallis (1981) that the 500-year-flood divided by the size
of the drainage area may vary over five orders of magnitude for streamflow
gauges located in a small hydrologically homogeneous region.

In England (N.E.R.C., 1975) six different goodness-of-fit measures led
to inconclusive results. The final recommendation of the British study was
to use a specific prebability distribution for each region of Great Britain.
These distributions, the so-called “Regional Growth Curves”, also have been
subjected to well-founded criticism (Hosking et al., 1985).

One may question if goodness-of-fit is a reasonable criterion for select-
ing an approximation to the annual maxima probability distribution. In
fact, a good fit is valid only in the range of the annual maximum for which
there are observations available, usually associated with small recurrence
intervels. However, what matters is the unknown fit for large T values.
Houghton (1977) and Moreira et al. (1983) have shown that the best “inter-
polating distribution” (the best fit) is not necessarily the best extra.pola.ting
distribution” (the best estimator of z(T"), T large). In Section 3, it is shown
how the minimization of the mean absolute error of X (T} may be used as an
alternative criterion for selecting the approximate probability distribution
of the annual maximum.

The only question raised thus far is that of how to estimate the peak
flow, X(T). However there are other engineering problems which require
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the inflow volume for different durations; for example, the sizing of the flood
storage in a man-made reservoir. In thisregard, oneis required to calculate a
flood storage with a failure recurrence interval of T'. The design of a spillway
presents a similar problem. In this case, it is possible to attenuate the flood
in the so-called “safety storage”, which is situated above the flood control
storage. Whenever there is some water in the safety storage, the operational
rule is to empty it as quickly as possible. Therefore, the only limitation on
the outflow rate is set by the hydraulic conditions of the spiliway. These
will not be constant. Furthermore, as this is an operation required for dam
protection, no constraints regarding downstream flooding are taken into ac-
count while the safety storage is being voided. The problem is to calculate
jointly the spillway capacity and the safety storage for an overtopping of the
dam event with the recurrence interval 7. If the dam is earthfilled, overtop-
ping will likely mean a dam break with catastrophic downstream effect, and
T is therefore assumed very large, say 1000 or 10,000 years. Obvicusly, the
larger the spillway capacity the smaller will be the safety storage, andvice
versa.

Questions regarding the evolution of reservoir storage could be solved
easily if a large number of daily flow sequences were available to be used
in the evaluation of the frequency of failure for each tentative design. Ob-
viously, these frequencies would only be reasonably close to the respective
probabilities of failure if the number of simulations were at least one order
of magnitude larger than the recurrence interval being considered. For flood
control calculations this means that the number of daily sequences should
be of the order of 500 and for spillway design of the order of 100,000. But
the stream records are seldom longer than m = 100 years, This paradox can
be circumvented if a daily stochastic streamflow model is used to produce
as many synthetic sequences as necessary.

Several features of flood volume modelling and daily strearflow mod-
elling are discussed in Section 4, in particular the question of how to reduce
the computer time necessary to generate a large number of synthetic daily
sequences.

2. THE FIRST ASYMPTOTIC EXTREME VALUE
PROBABILITY DISTRIBUTION (GUMBEL})

Let us assume that non-stationarity in the deily flow process can be
neglected during a flood season that lasts for n days. In this case, it is easy
to obtain some insight into how the Gumbel distribution approximates the
true distribution of the annual maximum daily streamflow. Initially, let us
accept the unrealistic assumption that the daily streamflows Y1, Ya, .. ¥o-
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are independent random variables. In this case, the probability distribution
of X = max {¥;} is simply

¥

., @

Figure 1 shows the graphs of F.{z;n) for different n values for the case
where the ¥; are normally distributed with E(¥;} = var (¥z) =1, Vi. Tke
horizontal axis is such that a plot of the Gumbel distribution would form 2
straight line; that is, the variable g is such that

Fa(zn)= P(X <2) = PN}, Yi <o) = (R

g=—la (~In Fz(z;n)). (3)
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Figure L. Probability distribution of X =max {Y;, {=1,...,n}. E(Y;) =
ver (Y;) =1, (Y;,Y;) independent, Y; normally distributed.

The main facts to be observed from Figure 1 are:

a) The cuarves cannot be approximated by straight lines, meaning that the
use of the Gumbel distribution would result in error. Of ecourse, this has
been known at least since Gumbel’s comment (1958, pp. 219) about a
graph similar to Figure 1 (See Figure 6.2.1 (3) in the above reference,
which incidentally has a minor mistake): “For the normal distribution,
however, the approach is very slow. The curves for n = 100, 200, 500
and 1000 taken from Tippet (1925) depart sensibly from a straight line,
if we go outside the interval 0.05 to 0.95”.
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b) As typical steamflow records are generally no longer than 30 years,
straight lines fitted to the empirical probability distributions of X, in
the range T = 1 to T = 30, will tend to overestimate z(T), for large T
values.

Figure 2 shows the graphs of Fy(z;n) for different n values for the case
where the Y; are log-normally distributed with E(¥;) = var (¥i) = 1, Vi.
Again the curves cannot be approximated by straight lines, bus, in contrast
to the case of Figure 1, the use of the Gumbel distribution will tend to
underestimate z(T') for large T values. Furthermore, it should be noted
that the vertical scales used in Figures 1 and 2 are different, meaning that
the marginal distribution of daily flow Y; is relevant when estimating ={T)
{Grigoriu, 1979).
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Figure 2. Probebility distribution of X = max{¥;, i =1,...,n}. E(Y}) =
var(Y;) = 1, (V;,Y;) independent, ¥; normally distributed.
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The differences between Figures 1 and 2 are due to the tail behaviour
of the two distributions. Although the normal and the log-normal distribu-
tions are of the exponential type (Gumbel, 1958, pages 119, 120, 136, 146),
Fz(x,n) will converge to the Gumbel distribution with increasing n in dif-
ferent ways. In fact the normal distribution is “light-tailed”, in the sense
that its density function goes to zero, for increasing y, more rapidly than
an exponential density function. The converse is true for the log-normal
distribution, which is “heavy-tailed®. More precisely, it can be said that if
the conditional mean exceedance defined as E(Y — y | ¥ > y) is a decreas-
ing (increasing) function of y— at least for sufficiently large y— then the
probability distribution of Y is light (heavy) tailed (Bryson, 1974).

Now assume that Y;, the streamflow on day 1, is such that

Y: = exp(W:)
and

Wi=a+4(Wis1—a)+8(1 - YN, (4)

where Nj; is standard normal and

0, %

We cannot expect that this simple Markovian process will actually resemble
daily streamflows, but it is useful in providing some insight into how the
time persistence of the process affects the use of the Gumbel distributicn as
an approximation for extreme values.

Obviously the marginal distribution of Y; is log-normal and the following
properties can be derived easily:

E(Y;)=exp(a+£°/2), (5a)
var (Y;) = exp (2a+ p) exp (87 - 1), (52)
skew (Y;) = (8/2)* + 3(8/<), (5¢)
corr (Y3, Yiga) = exp (827%) -1, (5d)
E(Y; | gio1) =exp [B2(1-1")/2+ (1 - 7)] ¥, (3¢)
and
var(Y; | gi1) = [exp (2 (1 -4+ a1 - 7))) (55)

—exp(B?(1-~") +2a(1 - ’r))] v’

If one assumes that @ = In2~% ='—0.35,84 = (In2)} = 083 and v =
[In 2]~ In {1+ 0.95) = 0.96, it is possible to show, by back substitution
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in the above equations, that B(Y;) = var(Y;) = 1, skew(¥;) = 4 and corr
{Y:, Yit1) = 0.95. These values are typical for daily streamflow time series
of large rivers. The regression of Y; given y;_; is practically coincident with
the straight line 0.95 y;_1 + 0.05 for values of y;_; larger than 0.5 and the
autocorrelation is practically coincident with 0.95%, for values of k smaller
than 10.

The stochastic process defined by (4) is heteroscedastic, which is 2
feature in agreement with the hydrological experience that the larger the
streamflow is today, the less precise will be the flow forecast for tomorrow.

The probability distribution of X = max; {Y;} is

Fy(zn)=P(Y1 <z, Y;: <z,...,Ya L 2)

Inz—uo lnz—a

= f_ :’_ - f_ T¢n(u)du, (6}

where ¢, is the n-variate density function of the standard normal. This
n-fold integral is difficult to evaluate for large values of n.
A first approximation to Fx(z; n) is the following (Rosbjerg, 1979):

Fx(z;n) =z Fi{z;n) =P (Y1 < ) ﬁP (Y;<z|Yie1<2)

i=2

- (25)]

-1
[Qz(ln; cxJ ln; aw)] as2

In short, this approximation is

Fi{z;n) = &2 037t (")

where &, and &, are the standard normal probability distributions respec-
tively for the univariate and bivariate (with correlation coefficient ) cases.

A second possible approximation to Fx{z;n) may be obtained by as-
suming that the upcrossings of the {Y;} process with regard to the threshold
level =, for large =z, is a Poisson process. As such, the waiting time, (K),
between upcrossings is exponentially distributed with the following mean
rate (Grigoriu, 1979):

#(z) =P (Yis1 > =, Vi < 3)

—a, (BEE) gy (BE22 2002, @
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or simply
p(z} - @1 bt @z- »
Hence ' s
Fic(k) ~ 1 — exp((®2 — 1) k). (9)
However,

P(X < z) = Fx(z;n) = P(K > n) = 1— Fx(n) = exp{(®z — &1) n).

Therefore, in our short notation the second approximation to Fx{z;n)
may be writfen:

Fy{z;n) = exp{(®2 — &1)n) (10)

A third approximation can be obtained through the Monte Carlo ap-
proach by using {4) to generate s sequences {¥,Ys,...,¥3},,/=1,....8.
Since each sequence is associated with one extreme value observation, a
sample (21,22, ..,%,) can be produced. Therefore, it is possible to esti-
mate Fx(z;n) by Fs(z;n), the empirical probability distribution of X. In
fact, Fy(z; n) converges to Fx(z;n) with growing s.

Figure 3 shows the graphs of the approximations for n = 100 days,
which is a typical duration for the flood season. The graph of the second
approximation was not plotted because it falls very close to Fy(z; n). The
third approximation, which is practically coincident with Fx(=z;n) for T <
1000, was cbtained for s = 10® “flood seasons”. The descriptors of the X
variable are, according to the third approximation:

E(X) =3.13, std. dev. (X) = 2.23, skew(X)=2.74, kurt(X) = 18.72.

These values are different from the descriptors of the Gumbel distribu-
tion (skewness of 1.14 and kurtosis of 5.4). Also displayed for comparisan
is the curve for the independent process, which is calculated exactly using
equation {2}.

It can be noted in Figure 3 that the time persistence of daily stream-
flows does not play a role as significant 2s that of the marginal distribution
{see also Figure 1), although the time persistence cannot be dismissed in
this particular case. It should be noted that other Markovian processes with
moderate auto-correlation coefficients may eventually be treated as indepen-
dent, as far as extremes are concerned (Grigoriu, 1979).

The second comment on Figure 3 is that the Markovian approximation
may lead to significant errors in the estimation of z(T). For example, the
error in the approximation of 2{1000} in this particular case was of the
order of 12%. This is not large when one considers all other sources of
uncertainty usually found in the study of floods. But since we are talking
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Figure 3. Approzimations to the probebility distribution of X = max{¥;,
i=1,...,7} B(Y;) = var{Y;) = 1, corr (¥;,Y;41) = 0.95, Y; log-normally
distributed.

about an avoidable error, the recommendation on this subject is to adopt
the empirical distzibution, F3(z; n), rather than approximations Fy(z; n) or
Fa(z;n).

Now we would lke to know how valuable it is to fit the Gumbel distri-
bution to a set of annual maxima streamflows, as far as the estimation of
#(T) is concerned. Furthermore, we would like to compare the accuracy of
the Tesulting estimates with the accuracy associated with other fitting pro-
cedures for probability distributions, as well as with that associated with the
“time series approach”. Therefore, we will be considering three alternative
approaches for estimating #(T") and we want to discover which will lead, on
average, to the smallest error. The three alternatives are:

a.) Gumbel distribution (GUD). For a given set of annual maxima (1,2,
.+ Zm), the estimates ¢ and j (equation 1) are found through the
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iterative algorithm:
»
g ('xbj)
¥ lla
41 = 1!)2 P ( ¢ ) 3 ( )
o =1.28/s., (113)

2oz exp (—; =)

i

g(¥)=m|——z+

%5 2 exp(—9; =) (1)
;w,) dg(ﬂb) (11d)
and
he L (™ (1le)
PR T (e () ) )

where T and s, are, respectively, the sample mean and the sample stan-
dard deviation.

b) The exponentiel distribution (EXD). There are several competitors to
the first asymptotic distribution; for example, the gamma, the log-
Pearson type II, the generalized extreme value, and others. The twe-
parameter exponential was selected here for reasons which will become
clear in the next section. Its probability distribution is

Fx(z)-—l—exp[SA ],z>0 A0 (12)

It can be shown that skew(X) = 2 and kart(X) = 9. The estimation
procedure we adopt is:

A= mﬂ: T (5 - H{in(zi)>

and )
& = min(z;) ~ po (13)

c) The time series approach ('I‘SA) This uses the transformed daily stream-
flow record {In 9;, i=1,..., n} ., §=1,...,m to estimate «, § and
~. The estimates are used in equatlon (7) to get Fi(z{T);n) and ulti-

mately z{T). In accordance with the observations related to Figure 3,
it would be better to use &, § and 4 to get Fa{z(T);n). However, this
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Table 1. Results of the Monte Carlo Experiment

Method BIAS STDV RMSE

£(100)'= 11.46 GUD -311 175 357
EXD 018 247 248

TSA 143 3325  3.55

2(1000) = 18.99 GUD 750 249 799
EXD ~191 375 421

TSA 2924 621  6.60

2(10,000) = 30.32 GUD -15.88 327  16.21
EXD 780 508  9.28

TSA 249 1077 1105

BIAS = BIAS(X(T)) = B(X(T) ~ =(T))
STDV = STD.DEV.(X(T)) = var(X(T))*® = (B(X(T} - E(X(T))H)*®
RMSE = (MSE(X(T))** = (B(X(T) - =(7)*)*®

has been ruled out from the Monte Carlo experiment, the description of
which follows, because it would be computationally infeasible.

Let’s assume that z{T") must be estimated from a daily flow record of
m = 20 years {a typical value) which was generated by the Markovian process
with the parameters defined above.

Equation 4 was used to synthesize s = 1000 sets of m = 20 years of
“streamflow data”, each year with a “flood season” of n = 100 days. The
three alternatives described above were applied to each set in order to esti-
mate z(T) for T = 100, 1000 and 10,000 years. That is, Fy{z) is respec-
tively 0.99, 0.999 and 0.9999. The results are displayed in Table 1.

The estimator X(T') associated with the GUD method has the smallest
variance, but it has such a large bias that it would not be possible to recom-
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mend it in this particular case. For example, E{X{T)) is roughly half the
true value for 7' = 1000 or 10,000. Also, for these two T’ values, confidence:
intervals around an estimate Z(T) will tend not to contain the true value
z{T), particularly if the confidence intervals are calculated by the usual pro~
cedure. That is, if X is Gumbel distributed and if the method of maximum
likelihood is employed, then X(T') is asymptotically distributed as a normal
variable with E{X(T)) = (T and var{X(T"}) given by (Henriques, 1981):

var4(X(T)) = Eﬂfix—)(o.e'! +0.37 ( In (-In{1- T-1)*
~033I (-In(1-77%)). (19

For example, for T = 1000, var{X) = (2.23)%, and m = 20, equation
(14) yields var 4 (X(T)) = (2.26)?, which is remarkebly close to var(X(T)) =
(2.49)? of Table 1. If one assumes a particular estimate £(T') as being equal
to B(X(T)), 2nd making the appropriate calculations, a 95% one sided con-
fidence interval for the thousand-year flood would turn out to be equal to
{11.40, 15.13), which is still far below the true value of 18.99. In conclu-
sion, GUD would be an incorrect choice in this particular situation. This
is a warning against the belief, widespread among hydrologists, that the
asymptotic theory for extremes is a sound approach to flood modelling.

The estimator X(T') associated with the EXD method has the smallest
mean squared error. It is the best choice, unless somme loss function is used to
penalize the negative bias more heavily than the positive bias. The rationale
for this hypothetical loss function is that underdesign of a flood control
structure has, in general, more serious consequences than an overdesign.
If this is the cage, the TSA would be the best choice for T = 1000 and
10,000, although its estimator X {7T) is systematically the one with the largest
variance.

3. PROBABILITY DISTRIBUTION FOR ANNUAL MAXTMUM

The exponential distribution {equation {12)} was chosen as one of the
alternatives for estimating 2(T) in the last section because extensive Monte
Carlo studies have shown that this distribution is robust for fitting annual
streamflow mayima (Damazio et al., 1983; Damazio, 1984; Damazio and
Kelman, 1984). In other words, using the exponential distribution to fit
samples of annual maxima results in relatively good estimates of z(T') across
a range of possible parent distributions of X.

The search for a robust distribution for annual maximum streamflow is
not new. Slack et el. (1975) developed a Monte Carlo experiment in which
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random samples of different sizes were produced by parent population dis-
tributions F{z) and then these samples were fitted by distributions G(z),
not necessarily of the same form as F(z). In each case an estimate £(T) was
found and the distance to the frue value z(T') measured. Four distributions
were considered: the normal, the Gumbel, the three-parameter log-normal
and the three-parameter Weibull. The authors considered sample sizes rang-
ing from 10 to 90, population skewness ranging from 0 to 15 and recurrence
intervals ranging from 10 to 10,000 years. They found that when F{z) wasa
three-parameter distribution, the best G{z) was not frequently of the same
form of F(z). Furthermore, they found that the choice of the best G(z) in
each case was more sensitive to the skewness of the corresponding F(z) than
to its general form.

Landwehr et ol. (1980) selected six F{z) distributions from the Wakeby
family and allowed G(z) to be either Wakeby, Gumbel or log-normal. The
Wakeby distribution is well suited for Monte Carlo studies because it can
reproduce the different shapes of probability distributions usually employed
in hydrology and also because it lends itself to the easy generating synthetic
samples. A random variable X distributed as Wakeby is defined as

X=m+taft-@-0)]-c[1-0-0)7, (15)

where U is a random variable uniformly distributed in the interval (0, 1)
and {m,a,b,c,d)} are parameters. The major conclusion of Landwehr et
al. (1980) was that the Gumbel and log-normal distributions resulted in
a rather precise under estimation of extreme quantiles when playing the
role of G{z). However, this was not the case when G(z) was adopted as
the Wakeby distribution with parameters estimated through the probability
weighted moments method.

Damazio (1984) repeated the study of Landwehr et al. (1980), adding
the two-parameter exponential distribution (12) to the kst of the G(z) dis-
tributions. He found that for T larger than 200 years the exponential dis-
tribution with the parameters estimated through the method of moments
resulted in the smallest cumulative (among the populations) mean squared
error. He concluded that the exponential distribution should be considered
by hydrologists as an alternative for modelling maximum annual series.

The conclusions from these Monte Carlo experiments depend natu-
rally on the selection of the population distribution F(z). For this reason,
Damazio et al. (1983) used regional Wakeby distributions of annual maxi-
mum, estimating parameters for Brazilian basins by a procedure suggested
by Wallis (1981). Again the exponential distribution (12} turned out to be
the most robust among & large set of competitors such as: pormal, two-
parameter log-normal, three-parameter log-normal, two-parameter gamma,
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three-parameter gamma, generalized extreme values, Gumbel and Wakeby.
The method of moments was adopted in all cases, with the exception of
the Wakeby distribution, which was fitted through the probability weighted
moments method. The second most robust distribution was the Gumbel.

The search for a robust estimator of #{T) may be extended fo the case
when some information is available on ficod events which preceded the
gauged record. In some basins there is physical evidence of floed events
that occurred thousands of years ago, such as landscape “scars” and mud
layer deposits. Palacoflood hydrolegy is a branch of the geophysical sciences
that secks the estimation of the magnitude and the date of occurrence of
these events., Since it was not obvious that the inclusion of this kind of
information actually decreased the error of estimation for 2{T), the subject
was investigated by Hosking and Wallis {1984). They came to the con-
clusion that palaeohydrology information is most useful when estimating a
thres-parameter flood frequency distribution for a single site possessing only
a short gauged record. When several independent and homogeneous gauged
records from different sites are used in a regional food frequency analysis,
the value of paleohydrological information is negligible.

In other basins there may be some historical information based on the
memory of old people who remembered the highest river stage in their own
life span and, with luck, also in their parents’ life span. In these cases the
most that the hydrologist can expect to know is the highest water level
that occurred before systematic measurements started. This length of time,
k, is in general smaller than 150 years, which is not a short interval when
compared to m, the number of years of a streamflow record (m is generally
smaller than 50). Cohn (1984) developed new techniques for incorporating
this kind of historical information. He assumed F(z) to be log-Pearson I
and adopted the log-normal distribution {a special case of the log-Pearson
TIT) as G(z}. He found that the historical information was of tremendous
value for reducing the mean squared errer of the estimator of (10} znd
z(100).

Damazio and Kelman {1984) developed Monte Carlo studies to inves-
tigate the performance of the exponential and Gumbel distributions when
historical data is available for moderate A (up to 150). They defined a set
of twelve population distributions F{z) of the Wakeby form, (called W-1,
W-2,..., W-12). All twelve have a single mode, a positive lower limit and no
upper limit, Their skewness and kurtosis were selected in order to resemble
typical values for Brazilian rivers.

Figure 4 shows the chosen pairs of skewness and kurtosis, as well as
some empirical data. The lowest skewness in the experiment was close to
the Gumbel value {1.14}; three other skewness levels corresponding t0 1.5,2.0
and 2.5 were also investigated. For each skewness level, three kurtosis values
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Figure 4. Skewness and kurtosis of the Wakeby distributions.

were considered, the lowest one in each case corresponding to the log-normal
distribution. Table 2 shows the main characteristics of each distribution. It
should be noted that all of them have unit expected value and coefficient of
variation arbitrarily chosen as 0.49.

The Monte Carlo experiment was executed for A = 50, 100 and 150
years and m = 5, 10, 25 and 50 years. A large mumber of samples (k) were
generated from the twelve Wekeby populations for each {h,m) pair. Each
sample ¢ (i = 1,...,k) was used to estimate Z{T) by the eight alternative
estimation procedures that are the combinations of the following three-way
classification table:

a=11 - Gumbel Probability Distribution
~ |2 - Exponential Probability Distribution
B= { 1 - Method of Moments -

2 - Method of Maximum Likelithood
C= { 1 - Use Ouly Streamflow Record

2 - Use Streamflow Record + Historical Data

The methed of moments suggested by the USWRC (1977} was adopted
for the case (A = lor2, B =1, C = 2). The method of maximum
likelihood suggested by NERC (1975) for the case (A=1, B=2, C = 2)
and the method of maximum likelihood suggested by Damazio and Kelman
(1984) for the case (A=2, B =2, C = 2). Standard procedures were used
in all cases with C = 1.
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The efficiency of an estimation procedure for each Wakeby population
can be defined as MAE* (T') / MAE (T}, where MAE* (T) is the minimum
error among all the estimation procedures and MAE (T') is the error for the
particular estimation procedure under consideration. A robust estimation
procedure is such that its efficiency does not drop abruptly when it is not
the winner. Therefore, a reasonable criterion for selecting the most robust
estimation procedure is to search for the one that has the highest minimum
efficiency among the twelve populations. That is, the maximin criteria seems
to be suitable in this particular sitvation. Table 4 shows the minimum
efficiency for all pairs (h,m) and eight estimation procedures. According to
the minimax criteria, it can be noted that A = 2 (exponential distribution)
and C = 2 (streamflow record + historical data) are the best choices. In
some cases B = 1 (method of moments) is preferable and in others B = 2
{method of maximum likelthood) is preferable. As a rule of thumb, the
method of moments might be used whenever h < 4m; otherwise the method
of maximum likelihood should be used.

The fact that the exponential distribution came out of this competition
as the winner, which confirms and validates the conclusion of the previous
section, does not mean that we have a reliable procedure for estimating
z(T}, for T large. For exarnple, Kelman and Damazic (1985) have studied
what would be the design of the spillway for the Salto Santiago Dam in the
Iguagu River, if only 10 years of streamflow record immediately antecedent
to the year of the design were available. In other words, several estimates
of z(10,000) were done for different “windows” of 10 years sliding over the
streamflow record.

The estimates of z(10,000} ranged from 13,000 m®/s to 40,000 m3/s.
Since in 1983 the peak flow of 17,000 m®/s was actually observed, a catas-
trophe could have occurred in several circumstances. Fortunately, the spill-
way was designed through hydrometeorclogical methods and the capacity is
26,000 m3/s, very close to the estimate of {10,000} when the full 42 years
of records are used.

Kelman and Damazio (1985) have studied the probability distribution of
the recurrence intervals associated with estimates, £{10,000), from different
record lengths {m) sampled from an exponential distribution. They found,
for example, that when m = 5 there is a probability equal to 0.20 that
the recurrence interval of the design flood will be smaller than 100 years,
when one i actually trying to estimate the 10,000 years Hood event. Since
underdesigning of a floed structure is much more serious than overdesigning,
the authors have suggested a “safety factor”, for use whenever the streamflow
record is small. This safety factor was developed under the assumption that
when the target is 2{10,0000), the probability of hitting some value smaller
than 2z{100) should be 2t most no more than 0.01. The safety value a was
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Table 4. Minimum Efficiency of Fack Estimation , Procedure,
MAE*{10000)/MAE(10000) emong the 12 Wakeby Distributions. (* is the

“winner”) .

ABC ABC ABC ABC ABC ABC ABC ABC
h m 111 112 121 122 211 212 221 222

150. 50. 0.22 022 021 022 030 *031 017 0325
150. 25. 0.26 027 026 028 034 037 019 *0.3%
150. 10. 0.45 046 044 056 056 060 028 *0.75
150. 5. 0.44 0350 041 078 046 061 030 *0.87
100, 50. 922 022 021 021 030 *0.31 016 022
100. 25. 0.28 036 028 030 0.38 *041 022 0.38
100. 10. 046 049 045 054 058 0862 031 *0.76
100. 5. 0.49 058 047 086 050 089 034 *0.94
50. 50. 022 022 021 021 030 *030 019 0.19
50. 25. 029 030 031 031 040 *043 022 031
50. 10. 045 049 045 031 058 063 033 *0.70
50, 5. 055 064 052 076 055 082 036 *0.89
25. 25. 026 026 0.26 026 034 %034 023 0.23
10. 10, 045 045 044 044 056 *056 040 0.40
5. 5 081 08! 060 060 071 *071 058 058

derived empirically for the exponential distribution as follows:

14821y

a=p Bli-~)+921]’ (18a)
where
g = —0.107 + 5.48m~%% — 63.26m™% + 169.637 %%, m <23 (18b)

=1 m223 {18¢)

and a is the coefficient of variation.

The anthor’s recommended equation for estimating the 10,000 years
flood event for the spillway design of large dams is:

£(10000) = (Z + 8.21s5). k (19)
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4. DAILY STREAMFLOW MODELING

Let us suppose it is necessary to calculate the flood control storage v* of
a man-made reservoir located upstream from a city, in such a way that the
probability of downstream flooding is equal to p. By downstream flooding,
we mean that the daily outflow from the reservoir is greater than a critical
value y*. I V is the random veriable “maximum flood volume to be atten-
nated in the reservoir during a flood season of n days”, one is seeking the
solution to the equation

PV >v*)=p, (20¢)

where

V= max [0,((¥;+Y1—---+%)—(k—7+ 1) {208)

1<5<k<n

and Y7 is the daily inflow to the reservoir on day 1.

If the random variables ¥; and Y; were independent ¥¢ # j, then the
probability distribution of the maximum deficit derived by Gomide (1975)
could be used. However, the strong temporal persistence of daily streamflows
make it necessary to search for alternative solutions to equation (20).

Beard (1963) approached the flood control design problem by defining a
set of random variables (W (1), W{2},...,W(d),...,W(n)) such that

=0

d—1 ' ’
W(d):ma,x (Z}"-_H-, i=1, 2,...,n—d+1). (210)
$

There is a (1 — p) inflow volume quantile W*{d), associated with each
duration, which is defined as:

P(W(d) > w*{d)) = p. (218)

The graph (d, w*(d)) is usually a non-decreasing curve which is called the
volume-duration relationship for probability of flood p. In practice the values
w*(d) are calculated by fitting a probability distribution to each random
variable W(d). As the estimate of the quantile w*{d) niay be eventually
smaller than the estimate of w*(d+ Ad), Ad > 0, due to sample variation,
“smoothing functions” are often used to assure that the function w*{d) is
indeed non-decreasing. The flood contrel storage is selected as

v3=m§,x[w*(d)—-dy*], d=1, 2,...,n, (22)
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which is equivalent to
vp = w* (dc) - dcy‘: »

where d, is called the critical duration. It should be noted that vp is smaller
than the true value v* because

PV >vs)=PW(l)>va+y ot W(2)>vp+2y" or ..)
> P(W(d,) > va+dy*)=p (23)

In other words, this method results in a probability of downstream flooding
greater than p.

Another possibility for calculating v* is to apply (20b) to each flood sea-
son of the streamflow record, resulting in 2 random sample (v1,%2,...,%m),
where m is the number of years of record. A probability distribution for V' is
then fitted to the random sample and v* is ultimately estimated. However,
in several flood seasons the sampled V may be zero. In other words, there
is a probability mass on zero, P{V = 0) > 0, and therefore the number of
positive observations of V is smaller than the number of flood seasons m.
Consequently it is difficult to define the probability distribution of V', for
positive V', unless m is exceptionally large. As this is seldom the case, a
stochastic model may be employed through the empirical probability dis-
tribution of V' to produce as many synthetic flood seasons as necessary to
estimate v*.

If a stochastic model is available to produce thousands of daily stream-
flow sequences, it is possible not only to calculate the flood storage, but also
to evaluate the safety of an existing or designed spillway. This can be done
by simulating the reservoir evolution and counting the number of runs that
result in dam overtopping (Kelman and Damazio, 1983).

There are several daily streamflow models described in the liferature; for
example, those suggested by Quimpo (1967), Treiber and Plate (1975}, Kel-
man {1977, 1980), Weiss (1977), O’Connell and Jones {1979) and Yakowitz
(1979). However, these models have seldom been reported as useful in flood
studies. A few exceptions could be mentioned; for example, Plate (1979),
Yevjevich and Taesombut (1979}, Bulu (1979), and Kelman and Damaszio
{1983). Perhaps the lack of popularity of daily streamflow models is due
to skepticistn about the capability of these models to produce synthetic
sequences with the same statistical properties as the single observed time
series. 'This writer’s experience is against this skepticism and is in faver
of including these models in the hydrologist’s tool kit. In fact, this writer
and his colleagues at CEPEL have been applying successfully a multi-site
daily streamflow model called DIANA (Kelman et l., 1985a) to several flood
studies in Brazil (Kelman et al., 1980, 1982, 1983, 1984, 1985b; Costa et ol.,
1983; Moreira et al., 1983).
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It has been ocur experience on large basins that simple models, usu-
ally conceived on a semi-empirical basis, give best results. Perhaps this is
because simple models tend to be parsimonious in the number of model
assumptions, even at the cost of not being parsimonious in the number of
model parameters. When it comes to daily data, the information available
is usually erough to support the option in favor of simple models, very often
of a non-parametric type. In other words, in daily streamflow modeling, it
is better fo let the data “speak for itself”, rather than imposing some tight
preconceived stochastic process formulation. It should be noted, however,
that we are referring to large basins which are not subjected to hurricanes,
Iir such basing an exceptional flood may result from the joint occurrence of
events which are not themselves remarkable, but that can be used as “build-
ing blocks” to synthesize hydrographs different from those observed in the
past,

In order to illustrate these peints, a model used by Kelman and Damazio
{1983) for dam safety analysis will be briefly described (which is not the
DIANA model). It might not represent the best balance of the parameters
versus assumptions conflict. In fact, it is biased towards minimizing the rcle
of the assumptions in favor of empirical evidence,

Let ¥; be the mean flow on day ¢ and let

Zi=Y:- Y. (24)

The Z; are classified in a three way table according to the following criteria:

Z; >0 — a=1
A

Z; <0 — a=2
B- ¢ 1%% 1<¢q — b=j
C— Tymo1 1< Ty — e=m

The vector g = (g0,¢1,92,---5%,--.,4-) partitions the range of daily
flows into r intervals, whereas the vector = (rg,71,72,...,7m;...,7s} paz-
titions the flood season duration into s intervals. Therefore, each value 4;
may fall in one of the 2rs classes, according with the associated set (a, b,
¢}). The class marks should be selected according to the peculiarities of the
data. For example, one may guess that the falling {or rising) limb of the
hydrographs behave differently for high and low flows and choose, by visual
inspection, a component of q which will divide the two “states”. Analogously
one may observe that the floods in February “lock different” from these of
January and therefore choose the last day of January as one of the compe-
nents of r. Care must be taken to avoid classes with a scarcify of sample
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points; the number of observations in each class should be large enough to

allow the use of the associated empirical distribution. ’
The persistence of daily streamflows is incorporated into the model
through a seasonal two-state Markov chain representation: ’
7 =P (% > 0| Z_; > 0) (25)
and
¢¢=P(Z;<0[Z;_1<0}, (26)

where ¢ depends on the { value, according to classification C.

Once the class mark vector g and T have been established, estimation
of the transition probabilities 7y, ¢1, T2, ¢2,...,7s ¢, and the grouping
of the observed z; values according to the corresponding (a, b, ¢} set, is 2
simple matter of data manipulation. Bach synthetic daily flow sequence is
produced according to the following algorithm:

I} i = 0; sample ¢(0) from the last-day-of-dry-season flow empirical
probability distribution; @ = 1;

) i=i+1;

IIT) set the value of b according to ¥;.1 and of ¢ according to 1;

IV) sample the u value from the uniform {0, 1) distribution;

V) if a =2, go to (VII);

VI} if u > x, then a = 2 and go to (VII);

VIO) if u> ¢, thenae=1;
VII) sample the z; value from the empirical distribution of the (a, b, ¢)
class;

X} v = g1tz

X} if ¢ is not the last day of the flood season go to (II).

The above algorithm was used by Kelman and Damazio (1983) to pro-
duce 100,000 synthetic daily streamflow sequences for the Furnas Dam, on
the Grande River, Brazil. A 32 year record of daily streamflows provided
input data for the model. The class marks chosen were: yo = 0, yy = 1000,
s = 2000, yz = 00 (m3/s); and 7o = Dec. 1,y = Jan. 1,7, = Feb. 1,75 =
March 1, 7, = April 1 and 75 = May 1.

Figure 6 shows a comparisen between the empmca.l probability distri-
bution of annual maximum streamflow derived from the two sequences. The
good matching, evident by eye inspection, can be confirmed by the chi-
squared goodness-of-fit statistic of 1.01, using six grouping infervals.

Table 5 shows a comparison between the statistics associated with the
random variables “daily streamflow” and “annual maximum streamflow”. It
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reject the null hypothesis that the historical series was produced by the B~ = - s = " =
model. This is equivalent to saying that the model itself cannot be rejected. &
The 100,000 synthetic sequences were generated by a VAX 11/780 com- . B
puter in 90 minutes of CPU time and only 28 synthetic sequences were E
considered as “adverse hydrographs” for dam safety analysis. It seems to be - A
a waste of computer time to generate 99972 sequences just to find out that § 3 g o
they were not critical and consequently that they would not be necessary = & b =
for simulation. s« £ 2 5 3 &
Let us assume that each streamnflow sequence is a point of a sample = o o
space and we are interested in finding the probability of an event A in this :

sample space, as well as to simulate the system’s performance for several
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sample points that belong to A. In the previous paragraph the event A

"~ would be the zet of the “adverse hydrographs®. It would be convemient if

the model could be biased in order to increase the likelthood that a sampled
(synthetic) sequence belongs to A, without distorting the reliability on the
evaluation of the probability of A. Kelman (1983) approached this question
by using the importance sampling techrique {Hammersley and Ha.ndscomb
1564; Rubinstein, 1981).

Let

R(Y) = {(1): o p " (270)

where Y is a daily streamflow sequence.

The algorithm of the proposed model can be seen as a function that
maps a 2n vector U, the components of which are independent standard
uniformly distributed random variables U;, ¢ = 1,...,2n, into an n vector
Y of dimension equal to n. Therefore, (27a) could be rewritten as

WU) = K(Y) = { (1): y p 4 (275)

The probability of event A, P{A) = p, is given by
= f K(y)fy(y) dy = f h{u}fu(x) du, (28a)
¥ u

where f,(-) and fy{-} are respectively the multivariate density functions of
Y and U. Obviously, fr(u) is 1 when u belongs to the domain of the random
variable and 0 otherwise.

The usual estimator of p, when m sequences y(7) = {y:;, 1 =1,...,n},,
j=1,...,m are available, is given by

P=L13 K ), (29)
=1

which is unbiased (E{P) = p) and hes variance given by

ar (B) = p(l P (30)

Examining again the algorithm of the proposed model, one realizes that
if the u value of step IV is close $o unify, the hydrograph will keep rising if it
was already going up, or it will start rising if it was going down. Therefore,
a way of increasing the number of “critical” synthetic sequences, keeping m
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constant, is to sample « values that are most likely to be close to 1. For
example, adopting for the marginal density the following expression;

fulesm=(1—")+ 27, ui€(0, 1), 720, i= 1L, 2,...,2n (31)
(28a) can be rewritten as
p= fu . —_h(;v){u(;t ) fo- (us e
— g,. (M) u(e)
= Fo- ( fo= (") )
= Ey- (f:(tzu))) . (280)

Therefore, a new estimator for p is given by

L5 H() -

m U*)
%g ( () TG

U' (U* J) 2_.1

which is also unbiased. K fy-(-) is properly chosen, the varience of P may
be smaller than the variance of P. Mazumdar (1975) suggested that only
a few independent variables U; should be substituted by independent Uy
variables. With this in mind, a numerical example was performed assuming
that -y = O (no “deformation”) whenever a = 2 (hydrograph going down).
In other words, - was only allowed to be positive for ¢ = I, which means
that the synthetic hydrographs will tend to have long rising limbs, as if some
uncommon feature was imposed on the genesis of the flood, for example, a
cold front that stays longer than usual over the basin being investigated.
The numerical example was done with the event A defined as A =
{X > z7), where X is the annual maximum streamflow, X = mex {Y:},
and T = 100 years. According to Mazumdar (1975), the estimate of var(P)

for ¥ = «;, when a set {y(7), § = 1= m} produced at the point ¥ = 7o is
available, is proportional to

~ W (y(5)
Clvo,m) = ; foe (@ () v0) fo- (w* ()i vy) s

The optimal 4 value can be found through an iterative search that ab
each cycle uses (33) to find out the +; that minimizes var{P). This best 71
value is in turn used as the new -y value in the next cycle. In the numerical
example being considered the process converged in four cycles to v = 0.28.
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Table 6. Results of the Importance Sampling Esperiment
(meg=p(1 ~ p)/ var(P))  m=500

P 0.100 | 0.050 ] 0.020 | 0010 | 0.002 | 0.001
T (years) 10 20 50 100 500 1000
¢(T}H{m3/s) 4449 5054 5803 6303 7642 8206
CV{(P) 0.21 0.28 0.28 0.37 0.58 0.94
CV(P) 0.13 0.19 0.31 0.44 1.60 1.41
Th,q/(years) 204 242 625 723 1483 1131

Twenty sequences of 500 flood sequences each were generated by the
streamflow model with 4 = 0.28. The empirical probability distribution of
annual maxima was determined in each case, and the results are shown in
Table 6. Note that m,, is defined as the number of synthetic sequences which
are necessary to match var{P) (30) with var(P); as could be anticipated,
B is a better estimator than P for large recurrence intervals, and vice versa.

5. CONCLUSIONS

(2) The theory of extremes is not as useful for modeling flood streamflows
as has often been suggested. This is so because: (i) one never knows
to which of the asymptotic distributions, if any, the distribution of
X =max{¥;, i =1,...,n} will approach as n goes to infinity; (ii) the
transient behavior (n finite} may last for very large n values; and (iif)
the MSE of the estimator of z(T") associated with the first asymptotic
distribution may be unacceptably large.

(b) The two-parameter exponential is the most robust distribution for esti-
mating large return period flows for flood-like data typical of Brazilian
rivers.

{¢) Daily stochastic streamflow modeling is a suitable approach to the study
of flood phenomena. The objective of reducing computer time might
be achieved by the importance sampling technique, although this topic
must be further investigated and may eventually become obsolete with
the advent of computers with parallel processing capability.
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