Journal of Hydrology, 47 (1980) 235—249 235
Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

[3]
A STOCHASTIC MODEL FOR DAILY STREAMFLOW*
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ABSTRACT
Kelman, J., 1980. A stochastic model for daily streamflow. J. Hydrol,, 47: 235249,

A model for the description and generation of samples for daily streamflow is devel-
oped. The basic assumption is that the rising and falling limbs of hydrographs are to he
modeled separately due to the fact that they translate different physical processes. The
rising limb is mostly due to factors external to the watershed. It can be modeled similarly
for precipitation, On the other hand, the falling limb is mostly governed by the emptying-
water from the watershed. The model assumes the conceptual representation of the
watershed as two linear reservoirs. Any sequence of recession discharge is then a stochas-
tic output from these two reservoirs. The model was tested for a case study and results
are satisfactory.

INTRODUCTION

In this paper a new approach for the stochastic modeling of daily stream-
flow is introduced. It should be pointed out at the outset that no universality
is claimed for the model to be described. In fact, the attempt to develop a
general model may have been the reason for the failures of previous efforts
to model daily flows. It is hardly conceivable that a simple scheme could
model equally well the streams fed by snow melt and streams draining a
tropical catchment, to give only an example. The model to be described here
refers to catchments for which the direct runoff plays an important role in
the composition of the total flow. Nevertheless, each catchment that qualifies
for such a description must be studied on a case-by-case basis.

A dual approach is used, in the sense that the positive and the negative
first derivatives of the streamflow process can be modeled by two alternating
intermittent stochastic processes.

In this paper the conceptual framework of the model is set up first, and
then a technique developed with the help of the case study of the Powell
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Fig. 1. Daily flow hydrograph of the Powell River for the year of 1921,

o

Rivet, near Arthur, Tennessee. This river is described by Quimpo (1967) as
having an accurate record from 1921 to 1960. The outlet drains an area of
1767 km? and is located at 36°32'N latitude and 83°38'W longitude. The
mean daily flow is 32.0m? s7! (1116 cfs). For a better insight into the type
of streamflow studied, Fig. 1 shows the hydrograph for the year of 1921,
which is a fairly typical hydrograph.

THE CONCEPTUAL FRAMEWORK

The runoff at the outlet of a watershed is considered to be the sum of
three components, namely:

q(t) = q(t) + qa(t) + qa(t) (1)

Conceptually, these components have different physical characteristics, such
as in the case of underground flow and surface flow. Therefore, it is ex-
pected that these components will exhibit also different stochastic charac-
teristics. Fig. 2 gives an illustration of how the runoff formation is conceived
in this study. g,(t) is the outflow from reservoir I, which simulates the
groundwater storage; q,(t) is the outflow from reservoir 2, which simulates
the lumped storages of: (1) surface detention storage; (2) bank storage; and
(3) channel storage; and g (t) is the direct runoff, which is composed mainly
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Fig. 2. 8chematic representation of components in streamflow.
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of the surface runoff and the precipitation over the stream surfaces, Like
daily precipitation, daily direct runoff is an intermittent process.

There is no doubt that representing the retention capacity of a watershed
by only two reservoirs is an oversimplification of the real situation. However,
it is better than assuming the homogeneity of the whoie process, as is usually
done.

Ideally q4(t) depends mostly on factors external to a watershed. It can be
thought of as the immediate response of a catchment to the precipitation
events. It is shown by Kelman (1977) that precipitation can be successfully
modeled by the stochastic process as represented here in Fig. 3. {£(¢)} are in-
dependent random variables with standard normal distribution, {Z(¢)} being:

_ofr)

o — 1) pMIZ(t — 1) —u(r —1)] + o(r)[21—p*(1)] 2 (1)

Z(t) = p(m) + ——3

{Y(t)} being:

Y(t) = Z(t),..)[Z(t)]
and {X(t)} being:

Xty = Y(t)l/a('r)

Lo,y (*} is the indicator function; and wu(r), 6(7), p(7) and (7} are periodic
functions to be estimated from data, 7=1, 2, ..., w; w is the number of
seasons in which the year is divided.

It seems reasonable to model {g,(t)} in the same way as the precipitation
process, {X(¢)}. The estimation procedure is described in the reference men-
tioned. However, no realization of the g3 (¢) process is available, The fact is
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Fig. 3, Representation of the intermittent model.

that only the series of the total discharge, ¢(¢}, is measured. There is no way
of splitting g(t) into exactly its three components, g, (¢), g2 () and q3 (). A
somewhat arbitrary assumption is then necessary. It is possible that some
modification would lead to a more realistic representation of the phenomena.
The assumption is:

q3(t) = max[0,q(t) —q(t —1)}] (2)

Eq. 2 says that the direct runoff is either zero or it is equal to the positive in-
crement of total discharge. In fact, if g3(t) > O one could expect that the
reservoirs are partially replenished on the day ¢, and therefore it is likely
that:

qi(t+1) +qt+ 1) >qu(6) + Q2Q‘)

or

[q (¢ +1)—q, ()] + [a2(t+ 1) —gq2()] >0 (3)
Eq. 2 simply says that the above positive quantity is equal to q5(¢), or that:
g3(t) = [q1(t+1) —q, ()] + [q2(t + 1) —qa(t)] forga(5)>0  (4)
From eqs. 1 and 4 one can see that, whenever g3 (t) > 0:

qy(t) +g,(t) = glt —1) (5)

Hence, any rising limb of the hydrograph, say from day ¢, to day #; can
be obtained if the value of g(ty) as well as of the succession g3 (%), ...,
q3(t:) are known. In order to have a rising limb all the values in the suc-
cession qa(fy), .. ., ¢3(¢;) should be positive. How to resolve the problem of
the falling limbs of the hydrographs will be shown later. Next the process
g1 (t) for the Powell River is studied in more detail.

DAILY STREAMFLOW MODEL OF THE POWELL RIVER
Direct runoff

The observed streamflow data of the Powell River were processed fol-
lowing eq. 2 to produce the time series q3(t). (The same symbol is used for
convenience, either for the stochastic process or for the corresponding time
series.) The data were divided into 26 seasons each 14 days long, adding up
to 364 days. For each season the parameters y,, ¢,, ¢, and &« were esti-
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TABLE I
Tesults for goodness-of-fit statistics for the 26 seasons of daily flows of the Powell River

Period From To — il oy Pr @, X% (df)
()
1 1 Oct.—14 Oct, 3.6296 6.9689 0.2413 0.4312  s.oynT
2 15 Oct.—28 Oct, 3.2556 6.8980 0.7113 0.4098 10.57(4)"
3 29 Oct.~11 Nov, 3.3940 . 7.1673 0.6098 0.3883  8.78(3)*
4 12 Nov,—25 Nov, 4.3443 9.8158 0.5737 0.3848 5.33(8)
5 26 Nov.—9 Dec. 4.2393 13.5182 0.6620 0.4123 14.74(9)
6 10 Dee,—23 Dec. 11,2918 227644 0.6352 0.4500  6.19(11)
7 24 Dee.—6 Jan, 13.5328 37.9861 0.6001 0.5197 20.54(13)
8 7 Jan.—20 Jan. 15.2014 37.4007 0.6905 0.5067 18.57(14)
9 21 Jan.—3 Feb, 19.3112 43.0868 0.5325 0.5038 12.78(14)
10 4 Feb—17 Feb, 28,4385 67.6299 0.5148 0.5626 17.57(16)
11 18 Feb.—3 Mar, 36.3807 68.4997 0.6528 0.5823 13.556(14)
12 4 Mar—17 Mar.  43.4370 96.6109 0.6247 0.6158 14.82(15)
13 18 Mar,—31 Mar.  29.4476 57.0287 0.5679 05421 10.52(14)
14 1 Apr—14 Apr.  39.4548 60.2830 0.5625 0.5800 12.72(9)
15 15 Apr.—28 Apr. 385.1393 52,9360 0.5672 (.5483 14.30(10)
16 29 Apr—12May  21.0269 35,0319 0.6524 0.5284 12.63(9)
17 13 May—26 May  19.7310 27,8554 0.5145 0.4901  7.00(7)
18 27 May—9 Jun, 14.4111 20.8414  0.5221 0.4803 14.14(8)
19 10 Jun.—23 Jun,  12.2671 26.4863 0.4879 (.5550  14.32(9)
20 24 Jun.—7 Jul. 7.0326 14.4152 0.3834 0.4371 18.79(10)*
21 8 Jul.—21 Jul. 8.0993 18.3048 0.4296 0.4800 14.91(10)
22 22 Jul.—4 Aug, 8.8538 17.0723 0.2473 0.5132  9.86(6)
23 5 Aug.—18 Aug.  6.7849 15.0933  0.4047 0.4694 24.88(9)T
24 19 Aug.—1 Sep. 10.3664 15,5428 05306 0,4953  8,70(5)
25 2 Sep.—15 Sep. 7.2767 11.7339  0.3901 0.4904  9.17(3)*
28 16 Sep.—29 Sep. 7.8774 10.2326  0.3397 0.4761 7.30(2)*

* The test is rejected at the 5% significance level.
T 'The test is rejected at the 1% significance level.

mated. The x? goodness-of-fit statistic was computed for each of the 26 mar-
ginal distributions (one for each season). The results are shown in Table I.
The seasons marked with an asterisk are those which have the goodness-of-
fit of marginal distribution rejected at the 5% significance level. Those
marked with a dagger are the cases with rejection also at the 1% significance
level. The number of rejections was high: seven and two cases at the 5% and
1% levels, respectively. August—November, roughly the autumn, seems to be
the time of the year for which the positive increments were invalidly fitted
by the model. Later it will be shown that this problem is serious enough to
impede reliable working of the model for this specific season. However, it is
likely that one will be more concerned with studying spring and summer,
rather than the autumn, due to the timing of the floods. Data from Table 1
were used to produce the periodic functions that represent the time variation
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Fig. 5. The periodic ¢, and 0, for daily values of the Powell River.

of each one of the parameters, These are seen in Figs. 4 and 5 for the Powell

River (the step function and its smoothed version).

Outflow from the watershed storage

It was seen previously that, according to the model proposed, any falling
limb of the hydrograph is the result of emptying the two reservoirs. The
hydrograph values decrease only when g¢5(t) = 0. Hence, the hydrograph re-
cession curve is nearly independent of the characteristics of storm which

—
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causes the hydrograph rise. Only the states of the reservoirs,-as well as their
operating rules are relevant for this analysis. Description of reservoirs is then
needed. It is assumed that both reservoirs are linear, meaning that the output
g,(t), i = 1 and 2, is proportional to the storage S;(¢). Or:

g:(t) = K;Si(t), (i = 1and 2) (6)

During the recession part of the hydrograph the input to reservoirs is zero
with the continuity equation expressed in a simple form as:

a(t) = —aS(t)/dt, (i = land 2) 0

If eq. 6 is differentiated with respect to time ¢ and then eq. 6 used, we ob-
tain:

dg(t)/dt = —Kiqi(t), (i = land2)

or

dgi(t)/q;(t) = —K,d¢, (i = 1and2) (8)
Integrating of eq, 8 between 0 and ¢ yields:

n[q;(t)/a (0] = — K, (i = land2)

or

a.(t) = ;(0) exp(—Kit) (9)

Eq. 9 is the well-known exponential recession curve. It is obvious that the
outflow discharge from the ith linear reservoir, during a recession period, de-
pends only on the initial dischargeé g,{0) and on the reservoir characteristic
K. Therefore any recession curve can be expressed by:

q(t) = q,(0) exp(— K, t) + q2(0) exp(— K t), t<T (10)

where for convenience t = 0 indicates the beginning of the recession curve,
and T is the length of the recession considered. For:

W = ¢,(0)/q{0) (11)
eq. 10 may be rewritien as:

q(t) = q{(0)[W exp(—K;t) + (1 — W) exp(— K, )] (12)
or for v, = exp(— K, ) and vy, = exp(— K, ):

q(t) = q(0) [Wy{ + (1 — W)vi] (13)

K, and K, are constants that must be estimated. On the other hand, W in-
dicates how the maintenance of the hydrograph is split between the twao re-
servoirs, after a storm has occurred, Since the initial states of reservoirs are
expected to vary from one recession curve to another, W cannot be con-
ceived as a constant: rather its visualization as a random variable seems
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feasible. Therefore, in order to use eq. 12 in the generation of new samples,
not only the values of X, and K, must be known but also the probability
distribution of W, with g(0) always known.

It is reasonable to estimate K, and K, in such a way that the theoretical
recession curves will resemble the observed recession curves. In the more
specific terms, the estimation of K; and K, should be taken in the frame-
work of the following optimization problem:

n T
min Y Y (¢'(¢,;r) —q'(0,n)[w(r) exp(— K, )

KKz p=1 =)
+ {1 —w(r)}exp(— K, t)])* (14)

where T(r) is the length of the rth recession curve; n is the number of re-
cession curves in the historic data; ¢'(¢,r) is the observed discharge on the
tth day of the rth recession curve; and w(r) is the outcome of the random
variable W, associated with the rth recession curve.

For any pair (K, ,K,) the objective function of eq. 14 can only be evalu-
ated if the outcomes w(r),r =1, 2, ..., n are known. Again, it is reasonable
to assume that each w(r) is such that the differences between the rth theor-
etical and the observed recession curve values are minimized. By this reason-
ing, each w(r) can be found by solving the equation:

6 T™r)

s | & (@60 ~dOn[w() exp(— Ky )

+ {1 —w(r)}exp(—K,t)])| = 0 (15)
or
T q'(t,r) — q(0,nZT exp(— Ky t)
q(0,N) 27" [exp(— K, t) — exp(— K, )] (16)

w(r) =

Several numerical algorithms are available for solving the optimization
problem defined by eq. 14. Among them is the Rosen algorithm as a quite
convenient one. It is a mountain climbing type of technique, based on the
gradient projection method. A detailed description of the algorithm is given
by Kuester and Mize (1973). Here it is sufficient to say that the only require-
ments for the algorithm are: (1) objective function, which is given by eq. 14:
(2) first derivatives of the objective function, which can be obtained by a
proper use of eq. 14; and linear constraints, given as:

0<y, <1 or 0<K,; <o
and (17)
0<y, <1 or 0<K, <eo
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Attention is called to the fact that each time the value of the pair (K, ,K;) is
changed, the observations w(r) are re-assessed by using eq. 16. Also, one
should expect from the way the conceptual model was set that v, > v, (or
K, <K,), although this does not constitute a constraint, For the Powell
River daily flow data, the application of the algorithm vields:

vy = 0.8971 K, = 0.1086/day »> 1/K, = 9.2091 days
v, = 0.5029>K, = 0.6874/day - 1/K, = 1.4548 days

It is of interest to check how the theoretical recession functions obtained
by the above procedure, fit their observed counterparts. Fig. 6 gives this
visual comparison for the recession curves of the daily flow series of the
Powell River during the year 1921 for recessions which were longer than
four days. This choice is an arbitrary selection, imposed by the practical
difficulty of plotting all the recessions registered in 40 years. Attention is
called to the fact that in general the curves would not be well fitted by
straight lines. This means that the representation of the watershed storage by
a single linear reservoir would not be appropriate.

Once the values K, and K, are estimated the next probiem is how to de-
scribe statistically the random variable W. The set of outcomes of this vari-
able is simultaneously obtained with K, and K,. In principle, one could
expect any outcome w to lie between 0 and 1. A value of w > 1 would in-
dicate a reversion of the direction of flow related to the second reservoir,
Analogously, w <0 would indicate a reversion of the direction of flow
coming from the first reservoir. These flow reversions are anticipated to be
rare, but when one of them does occur, it is necessary to assert the rules
which govern the inflow hydrographs, rather than the outflow hydrographs.
This leads to the assumption that the characteristics of flow either from the
reservoir to outlet or from the outlet to the reservoir are identicat.

Qualitatively, one could expect E[{W|g(0)] to be small whenever the
initial discharge g(0) is large. Indeed high flows are associated with high re-
tention in the storages that the second reservoir is supposed to represent.
Consequently, its share of the flow supply should be initially higher than the
flow supply which corresponds to the first reservoir. The first reservoir is
characterized by a high storage capacity, which makes its contribution, ¢, (¢),
reasonably stable. Whenever the initial discharge is small, it is likely that the
total flow will be sustained entirely by the outflow from the first reservoir,
lLe.:

lim E[W|q(0)] = 1
a{0)—+0

(18)

A mathermnatical representation that fits the above qualitative descriptions is
given by:

E[Wiq(0)] = exp[—¥q(0)], ¥>0 (19)
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Fig. 6. Comparison between theoretical and observed recession curves, of daily flow series
of the Powell River, for the year 1921,

For each historic recession curve one pair of values [¢(0,r), w(r)] is available,
where r stands for the rth recession. These pairs can then be used to estimate
the value of ¥ by the least-squares method. For the daily flow sequences of
the Powell River, the value of ¥ is 0.000160. The coefficient of correlation
between ¢(0) and log w is —0.6737.

In general, the random variable W may be expressed by:

W = exp[—¥q(0)] +Z (20)

where Z is another random variable.
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For each recession the corresponding outcomes of Z can be obtained by
solving eq. 20 for Z. In the case of the daily flow series of the Powell River,
we obtain:

z(r) = w(r) —exp[—0.000160 ¢(0,r)], r=1,2,...,n (21)

The next thing to do is to test whether the sample of Z may be considered as
drawn from a normal probability distribution. This was tested for daily flows
of the Powell River. The x? goodness-of-fit test statistic is 42.70, with 36
degrees of freedom. Therefore, the hypothesis of normality could not be re-
jected at the 5% significance level. The sample mean and standard deviation
of Z are 0.07834 and 0.25604, respectively. With these last estimates and
test one can then generate the new series.

TESTING THE MODEL

The utility of the model depends on its capacity to generate new series,
which are to be considered the outcomes of the same stochastic process from
which the historic series is observed. The generation procedure is-performed
in the following steps:

Step 1. Generate the intermittent process gs(t). This is accomplished by fol-
lowing the procedure outlined in Fig. 2. The parameters used are shown in
Iigs. 4 and 5.

Step 2. Select avalue of the discharge for the commencement of new samples.
The mean discharge is a good choice for this value.

Step 3. Generate for each day, according to the following rules:

{a) 1 g5 (t) > 0; take step 3(b); otherwise, go to step 3(c).

(b) Make g{t) = q(¢ — 1) + q3(1), and go back to step 3(a}.

(c) If g3(t — 1) > 0, go to step 3(d); otherwise, go to step 3(e).

(d) Find E[W!|q(0)], given by eq. 19, For the daily flow series of the
Powell River compute it by E[W|q(t —1)] = exp[— 0.00016q{¢{ —1)].
Sample from the normal distribution a value for z. For the Powell River Z
comes out as N(0.07334, 0.06556). Then find w by eq. 20, and define
§, =wg(t—1Yand 6, = (1 —wg(t —1).

(e) Make n, =7v,;8,; and n, =1v,0;, so that g(¢t) =1, +n,. Go to step
3(5).

(f) Make 8, =7, and &, = n,, and go back to step 3(a).

The above step-by-step procedure was used to generate 40 years of data
for daily flows of the Powell River, The hydrograph for the first year of the
generated series is plotted in Fig, 7. This particular hydrograph year is given
because the first year of the historic record had previously been used. When
the model is valid, Figs. 1 and 7 show two different realizations of the
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Fig. 7. A generated daily flow hydrograph of the Powell River,

same hydrologic process. These sainples are different but the pattern of the
series is expected to be similar. This approach is based on a subjective infer-
ence with the individual assessment, whether the hydrograph of Fig, 7 looks
like the historic sample of Fig. 1, in a general hydrologic sense.

On a month-to-month basis, the random variables which are likely to be -

relevant for the evaluation of the validness of the model are: (1) the maxi-
mum daily discharge for each particular month; and (2) the mean daily dis-
charge for each particular month. For each of these two random variables a
matrix of observations with 40 rows (years) and 12 columns (months) was
constructed out of the historic and generated samples. Let us designate these

B T

matrices by {Fy};i=1,2,...,40;j=1,2...,12, For month j the sample |

marginal distributions are available for the historic and generated series. The
Smirnov two-sample test can then be applied. It says that:

D = max [S;(x) =S (x) | (22)

has some distribution which 95% quantile is given approximately by:
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Maximum daily flows for each month
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Month Mean Standard deviation D

hist. gen, hist, gen.
Oct. 843.2 758.0 1,649.6 568.2 0.350*
Nov, 2,674.3 833.6 8,622.9 990.8 0.276
Dec. 5,328.4 4,815.7 4,706.5 5,236.4 0.200
Jan. 7,890.0 12,347.2 6,190.5 11,286.5 0.275
Feb, 8,615.8 11,248.0 53774 9,995.9 4.125
Mar, 7,204.2 7,888.8 4,565.6 7,156.4 0.150
Apr. 5,000.1 6,350.9 3,270.7 5,755.8 0,100
May 3,772.6 4.638.5 3,944.9 3,164.6 0.250
Jun, 2,320.4 2.487.5 2,910.2 2,153.4 0,225
Jul, 2,289.5 1,408.7 2,324.7 1,002.4 0.225
Aug, 1,501.4 1,680.9 1,745.8 970.1 0,300
Sep. 747.8 1,346.8 904.2 838.0 0.550%
* The test is rejected at the 5% significance level.
TABLE IIT
Mean daily flows for each month
Month Mean Standard deviation D

hist. gen, hist, gen,

Oct., 235.2 293.8 192.2 233.7 0.200
Nov, 584.0 196.4 586.1 160.4 0.425%
Dec. 1,288.4 1,274.9 1,053.9 1,200.0 0.125
Jan. 1,981.2 3,394.2 1,224.6 2,390.9 0.300
Feb. 2,396.9 3,186.6 1,217.7 2,648.6 0.175
Mar. 2.310.3 2,450.8 1,136.8 1,943.8 0.225
Apr. 16124 1,698.6 753.8 1,290.9 0.150
May 1,122.7 1,563.0 786.5 1,065.7 0.300
Jun. 652.9 880.0 4921 736.0 0.200
Jul, 610.3 5560.3 440.2 374.3 0.125 -
Aug. 437.0 707.1 384.7 400.7 0.400"
Sep. 241,7 578.8 173.2 352.2 0.550%
* The test is rejected at the 5% significance level.
des = 1.358[(n, + ny)/n n, 12 (23)

where S, (x) is the sample c.d.f. of the historic sequence and §,(x) is its
counterpart for the generated one. The sample sizes are n, and n,. For
h, = n, = 40, d95 = 0.304.

-
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The results of the test are displayed in the last columns of Tables II and
II1. In these tables the values of:

J—.-iaial

are also shown for the historic and generated series, respectively.
The deviations marked by an asterisk are those of the rejection of the

) % 1 [ o
F, = Y Fy and std(F;) = EELE(F:';'“Fj)z] (24), (25)

hypothesis of statistical equality of samples, at the 5% significance level.

Using jointly the results given in the two tables, one can see that the period

of-time between August and November is characterized by a rejection of the
model, The remainder of the year shows the model to be accepted. Pre-

viously, while studying the process g3 (£}, it was found that a reasonable fit
could not be obtained for the autumn data. This is probably also the reason
for a poor performance of the overall model during this specific season.

CONCLUSIONS AND RECOMMENDATIONS

The proposed streamflow model is able to generate new samples with the
complex characteristics of daily streamflow. The intermittent model fairly
fits the positive first differences of daily streamflow. Representation of the
recession parts of hydrographs as a stochastic output from the two linear
reservoirs is acecepfable,

Several further research possibilities of the dual streamflow model look
promising, such as:

(1) If the direct-runoff g;(t) is supposed to represent the portion of the

input to the watershed which is not retained by any river basin storage, it is ;

likely that the parameters of ¢;(¢) are strongly related to those that define
the precipitation for the area. A joint study of the two processes could yield
results valid for regional applications.

(2) The constants K, and K, associated with the linear reservoirs, are

estimated by an iterative algorithm. They define the operation rules of the ‘

two reservoirs. As these two reservoirs conceptually represent the watershed
retention capacity, K, and K, must be related to physiographic character-
istics of the catchment. Therefore an estimation procedure could be devel-
oped to use this additional information.
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