A SIMULATION MODEL
FOR INTERMITTENT PROCESSES

by
J. Kelman'

SYNOPSIS

A general model for synthesizing intermittent data is in-
troduced. The basic assumption is that the intermittent process
results from censoring a non-intermittent continuous valued pro-
cess. Classical techniques for modelling time persistence in
this latter process can then beexploited. Also, the latter pro-
cess admits immediate known extensions to multivariate situa-~
tions. Examples related to daily streamflow and to wmovement of
single particles in sand channels are presented.
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INTRODUCTTON

The need for generating hydraulic data in the study of

complex water resources problems is recognized by most engineers.

Indeed, explicit solutions are rare; frequently, the only way

to extract some probabilistic information about the performance
of a system is to measure its response to a set ofsynthetic tra-
ces. This is the so called expertimental (or Monte Carlo) me-
thod.

This paper presents a technique for generating traces of
an intermittent stochastic process. Here, a stochastic process
{Xt} is defined to be intermittent if, for any t:

i) P(Xt <y) =0
1‘1‘)0<P(Xt v} <1
iif) P(Xt X} =0, for x > vy.

Thus, {X,} is a mixed process in the sense that it has a
positive prob&bility of taking on the discrete value v {called
truncation point), and also the continuum of values greater
than y. Many processes studied in water resources fit the above
description, as for example the three following cases: stream-
flow of rivers that occasionally go dry; daily rainfall; and
step Tength of a bedload particle.

The ensuing sections will cover the following topics:
i) the conceptual model which supports the technique of syn-
thetic data generation,
ii) the estimation of the parameters of the model,
iii} some comments on the generation of multivariate samples,
iv) an example related to daily streamflow and another related
to single particle movement in alluvial channels.

THE MODEL

It is hypothesized that an intermittent process, say {Ct}

is the result of a censoring precedure applied on a continuouys
process, say {Mt}' In other weords Ct = Mt if Mt > v, and
Ct = v if Mt < y. No physical justification is intended for

{Mt}. In fact it is an imaginary process which one can hopefully
model more easily than the intermittent process.

Therefore, the problem is shifted from advancing a {C,}
model to proposing a {M_} model. The Tatter ought to have " a
time persistence mechan{sm built in, as well as the capabili-
ty of coping with multivariate case. For the sake of simplicity
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the normal autoregressive lag-one model is adopted. With this
choice, the marginal distribution {M.} is normal, and therefo-
re the values of {C,} which are greater than the trunca-
tion point will havé a truncated normal distribution., Real data
may not be well fitted by the latter distribution; however,
greater versatility of the model can be obtained by further hy-
pothesizing that {C.-y} undergoes a power transformation before
coming out as a component of the observable {Xt} pracess,

Fig. 1 synthesizes the proposed filtering procedure. It
“routes" independent standard normal pulses to end up as an in-
termittent, and serially dependent, time series.

£ FILTER Mt FILTER Ct FILTER Xt
~tel 1 2 3 —te
Figure 1.
where

{g,} is i.i.d. ~ N(o,1)

2 1/2
{Mt' my = u+ p(mt_1 -uwy+o {1 -p9) Et}
(Gt o = YI("*’:Y).fmt) F Ly o (M)
(Xps xg = {eg = ) /s

Filter 1 introduces time persistence, filter 2 censors the da-
ta, and filter 3 increases the possibility of obtaining a good
fit of the marginal distribution.

(Ct - y)]/OE will have a power transformed truncated normal
distribgtion. Its p.d.f. is given by

o1 o
1)/
0¢égg7b)u) o I(O,m)(x) (2

where ¢{+) and &{+) are respectively the p.d.f. and the c.d.f.
of the standard normal. Fig. 2 displays serveral p.d.f. graphs
when p =0 and g = 1.
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£ (x)

Figure 2. Probability Density Function of the Power Transfor-
med Truncated Normal for u = 0 and o = 1

THE ESTIMATION PROCEDURE

Given a time series Xy, X, Xgsees of some intermittent
process, a method must be Tound to”estimate the parameters p,
G, p, and . Among several alternatives, the maximum 1ikelihood
estimation procedure is selected because of its large sample
properties. These properties allow setting up tests for rele-
vant questions, as, for example, the stationarity and/or serial
independence of data. Also, the asymptotic distribution of such
estimators are known. These features, however, will not be
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dealt with in this paper.

For random samples, and for o fixed equal to 1, estimators
for 1 and o are available in the Titerature, see for example
{1), However, when the observations are not independent, as is
the case here, the estimation procedure is understandably more
cumbersome. The likelihood function, evaluated in a straight-
forward way, would include a m fold integral of the multivaria-
te normal p.d.f. for each run of m observations equal to v. As
is well known, this integral is not analytically available for
m > 3. In order to avoid this difficulty, it is assumed that
the pairs (X}, X5)s (X3, X4), (X5, XG)"" are independent, and

the corresponding likelihood is to be maximized. This author's
experience with generated time series, i.e. in situations when
the "population" values are known, supports the accuracy of the
results yielded by the above simplifying approximation.

The estimation probliem then boils down to evaluating the
parameters of a bivariate distribution. Suppose a sample
{(Xg» Xt+1)’ t=1,2,... mis available. Without Toss of genera-

1ity, let vy = 0. Define the three following events:

Ay {Xt =0, X = 0}

A

t41
2t = e = Xgr Xpuy = ¥¢)

=0t U {Xt =0, z.}

Xea1 = %
0 <« th .‘fts Zt-

A Z2ps Ky

3t={)(t=
Assume that for the sample at hand the events AI’ A2t’ A3t

occur respectively Nys Nos and n, times. The Tikelihood func-
tion is then

n n
! n 2 3
For (V)" vt () [of o%o
’ 2 *
u op C

P(A)) = P(U <2, ¥ <a) = ./F U/ﬁ Fyy (wv) dudv, ()

-0
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where

1 -1
____1/2exp{__ Q }oand
21702(1—p2) 2(1-p%)

2
)

Fy,ylusv) =

2
=Y u - -
Q=651 - 2GR ) 4 (X

8

Similarly,

- O _ fu,v
PlRog) =Fy yxes ¥g) du dv = J[ﬁ] fu, v ¥g) dx dy

where the Jacobian

Jee¥
Xy |

Therefore,

a-1

aufax  3u/ay t

av/ax 3v/dy

ox
0

2 a-1
o (XeYy)

uy%~1 ‘

2 -1
PAy) = " (xyy )™ Fy yBEs ¥) dx dy (5)
Finally, 0

P(Age) = fy(23) du / Fyp (v/u = 23) dv

=

0

1
= f (z}) du\/ ¢
utct 2)]/2

“w o{l-p

V-0 z% - u(T-p)

o (1-p2)1/2

o~ o o
az zZL - u| | e zg - u({l-p)
P(Ayy) = —o— of —— o t dz (6)
a o} . (]_92)1/2

The random variables EéE and !éﬁ might be expressed as

U= J/Zw] + (1“0)1/2 W,
172
V=0 + (1-0)17% g 7

wher% N], Wos w3 are independent standard normal. From Eqs. (4)
and (7)

8-6

191

R=2) 2
1/2
_ - -p ot
P(AY) = J $(t) @{——W—G“_p) }dt (8)

From Egys. 3, 5, 6, and 8, after dropping the subscripts:

el
Tog L = LL (1,0,0,0) = C + ny log U/P¢(t) ¢[}lL_____1r{] dt

L o (1-p)
2 2
+ (2ny + n3) Tog 3 - ny hgé?-pl ¥ “j >
p)o
n
il 21000 + ¥*) = (2 + y*) + 2000}
+ L | {a-1) Tog {xy) + 77
2(1-p")o
n
°r -2 - u(1- * -
+% | (a=1) Tog z + log @[J——-%)zjl*' log ¢[——E] (9)
2 o
o (1-p7)

where C is a constant.

The estimates u, o, p, and a ought to be found in such a
way that the likelihood function, or its logarithm, is maximum
at this particular point. A numerical procedure, the Newton-
Raphson algorithm, will be adopted:

HA=D (10}
where
H is the Hessian matrix of the LL function, namely
am? liseme dALlsmie  aPLL/ayse
; llac®  dALsamde  PLL/30%a
) BZLL/BQ2 BZLL/apaa
I 221/ 507
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and

A’ = [”o]d “Mnew® %o1d “new’ Pold Pmew’ %ld ‘“new:
and
b = [aLL/au, 3LL/sc, ailsap, oLL/30 |

The first and second derivatives of LL, needed to evalyate
Eq. 10, are furnished in the appendix.

When the analyst wants to produce traces of several depen-
dent time series (multivariate case}, the cross-correlations
ought to be taken into consideration. For this situation the
following simplified estimation procedure is proposed:

a) For each "station" (time series) find the marginal parame-
ters u., g., pi» o according to algorithm (10). If & is the
number? 4 J of stations, j =1, 2, ...,2

b)  Find each lag-zero cross-correlation coefficient

Oz
1 < Jj<k <2, using only the data from station j 3k and k.
Suppose that for each pair of stations a sample (xt-, xtk)’
t=1,2, ..., mis available. "t" is the time J index

and "j", "k" are the station indexes.
Assume the sample space is divided into the four events

A1 = {th = 0, th = 0}

A

2t = U5 = Xege Xy = vl

Ay = Dy = %50 Xy = 03

Ay, = {X_.=0,%

4t tj tk = Yex!

0 < Xggs Vi

If the above events occurred respectively s Mas Ng, and n

times, the Tikelihood function is 4

L(ogy) =™ p(A) ™ 12 P(A,.) .13 P(Ay,) T4 P(A )
i Ty gl gy P t=1 T\aed 21 Tif3pdedy Pliygy

(1)
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Following a procedure analogous to the univariate case, the
problem boils down to

A A

-usfo. -u /o
37 K7k 9 ax 2
maxd ™ log / f ___._P_z_ (xg - 205, %5%
an (1-p5 )/

— -

ik
ij . )
» -
2 ny Tog(1-p5,) 1 oI U
+ xp) dxsdxg - Vi - 7 E[{—=
J S{1‘I3jk) cj
N o 0y 2
(3 = w0k - uk)) ((y k - ”k)) .
- 205, ( x ¥ S
k ~
J Uj Q’k O'k
n a7
3 ~ ~ ~ o _
“u = P O /0 {X0d - W)
+ Z 1 Tog % ( k Jkk 23 1)1+
Sk ]-pjk -~
n N -
4 ~ TN
iy = P 0500 (Y K - W)
v 5 | 10 0 (3 E3"K k) (12)
&, (1-02) 172 -
J Jk

DATA GENERATION

Once the parameters are estimated, the_generation of synthe-
tic traces is accomplished simply by following the stepwise
procedure illustrated in Fig. 1.

In the multivariate case the deviate &, .3 J =1, 2, %

: t,i .
are not independent. One way of generating J Et,j is by the
use of:
it = Aﬂt (13)

in which A is a 2x% matrix and n, is a 2x1 vector of indepen-
dent standard normal deviated. Therefore, the covariance
matrix associated with n. is 12, the gxl unit matr1§. Cogse-
quently, the covariance matrix associated with g, is AA’. On
the other hand Tinear auto-regressive equations for stations

8-9



194

"i" and "k" are:

1/2
My & = . + p.(M - . _2
t.J u.] DJ( t-I,J u‘]) + cj (I pj )F’t,J {]4)
1/2
M = X - 2
tok = Bt oMy o) o (e ) (15)

Multiplyi indi
g:ts:p ying Egs. 14 and 15 and finding the expected values, one

ALY
1/2 (16)
{(1—o§)(1-p§)}

Hence the {j,k) element of matrix AA®, 3 is gi

e T s J# ks is qgi
Eq. 16. The d1agona1 elements, of course, are unity. nggiglby
methods are available for finding a matrix A when AA® is given;
(2) contains a straightforward one. ’

corr(gt’j, gt,k) =

It whould be pointed out that with this a
. roach the
higher-than-lag-zero cross-correlations of thep?M } historical
process will not be reproduced by the synthetic tFaces.

EXAMPLES

The validity of the model can not be establi i
mode ablished in -
ral terms. In fact no claim is made about its universa?ftﬁ?n?t
i1s merely suggested that some intermittent time series may well
be simulated through the use of the proposed scheme. This can

b ; ?
fg]?g:F realized with the help of a couple of examples, which

The first example is related to simylation o i
flow. Many attempts have been made to develop modglga%;gtsigﬁ?g
enable the production of synthetic traces of this stochastic
process. The motivation for these efforts is found on the need
of better designs, as well as operation policies, for water
resources systems, particularly with respect to Ehe features
refated to flood control. The weird characteristics of the pro-
gﬁgzé 23?:;92’ hgs imposed severe limitations on the success of
’ S. review of i i j
e o fognd o of material related to this subject

Hydrologists tend to agree that success on stoc i
modeling daily runoff can only be achieved through tEZSZ$§3;}{
ment of some know]gdge about the physical processes that cause
runoff..Tq start w1th, it should be recognized that the hydro-
graph rising Timb is due mostly to factors external to the
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watershed. In other words, it is due to the sources that feed
the watershed. On the other hand, the Towering limb, for & gi-
ven recession period, is governed mostly by the emptying of the
watershed. It is, therefore, easier to deterministically ex-
plain the latter process than the former one. In a forthcoming
paper a model will be presented that assumes the runoff incre-
ments (flow on day t subtracted from flow on day t+1) belong
to either of two mutuaily exclusive intermittent processes. For
the time being only the positive increments will be studied.

If {D,} represents the daily streamflow process, the limi-
ted object?ve here is, then, to model the process {X;} defined
as:

D, -0 _4, for (B, - D ;) >0
I A a7

t 1o , otherwise

{X,} is clearly an intermittent process and hopefully it can be

modeled according to the approach introduced in the pre-
vious sections. This hypothesis will be tested for the Dela-
ware River at Valley Falls, Kansas, USA. Quimpo (4) reported
that the data for the period 1923-1960 is of good quality and
free of man-made influences. The drainage area is 922 square
miles. The study concentrated on June and July because this is
the rainy season, and therefore it is expected to be the season
of the year when the positive increments play a relevant role
on the general picture of the process.

A simple evaluation criteria of the performance of the sys-
tem was selected: a) goodness of fit of the marginal distribu-
tion, b) how the theoretical distribution of run lengths resemb-
le the historical ones. The latter will give an indication of
how well the model duplicates the time persistence of data.

The results are summarized in Tables 1 and 2. It is appa-
rent that the marginal fit for June was very good. In fact

P(xf] > 12.23)= 0.36. For July the result was not so encoura-

ging: P(x2 > 14.84) = 0.04. However, it seems fair to say that
even for 'July the marginal it will not exclude the use of the
model .

A approximation to the theoretical distribution of run
Tengths could be obtained through the use of an expression due
to Saldarriaga et al (5)}. However, for this particular need it
was simpier to use the experimental method: a synthetic trace
of the IM } process was generated and the corresponding sample
frequenci%s were considered approximations of the theoretical
ones. The trace was long enough to accomodate 10000 runs. A
measurement of the goodness of fit for the distribution of run
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Table 1 Table 2
Results for the Delaware River Results for the Delaware River
JUNE JuLY
There are 823 zero values in 1140 observations There are 907 zero values in 1140 observations
Parameters: u = - 9.685 g = 16.360 907
po=  0.258 a = 0.364 TI20 = 0-7%
Marginal fit of X} —w 2 - 12.23 Parameters: bl 2.2 - ]é'ggg
Marginal fit of X, — = x:.:; = 14.84
Class Frequency Class
Fre
(c.f.s.) Observed Theoretical (c.f.s.) Dbse‘"“'edq#gg{etical
0 0  .723  .722 5000 - 5500 .002 003 Class Frequency Class
500 - 1383 -162 158 5500 - 6000 .001 .002 (c.f.s.) Observed Theoretical (c.f.s.) Observed Theoretical
100 - 1900 026,030 6000 - 6500 .000 002 0 .79 795 > 5000 007  .004
1900 = 3500 .014 .018 6500 - 7000 .007 .002 0 - 500 158 151 )
2000 - 2500 'g” ‘912 7000 - 7500 -00T 002 500 - 1000 .020  .020 : .
2500 - 3000 'og)] 009 7500 - 8000 .003 001 1000 - 1500  .007  .010 . .
3000 - 3500  oog  o07 8000 - 8500 -003 001 1500 - 2000  .003  .006 . .
300 - 4000 ooy o06 8500 - 9000 .00z Q0] 2000 - 2500  .003  .004 : :
2000 - 2500  oge Q%5 9000 - 9500 001 o0 2500 - 3000 .00l  .003
4500 - 5000 oo 004 9500 -10000 ool 001 3000 - 3500  .003  .002
004003 >10000  .010  .008 3500 - 4000  .002  .002
4000 - 4500  .000  .002
4500 - 5000  .000  .001
Distribution of Run Lengths
PR = r No. of ob
Run Lengths (r) Observeq Thodretical puna served DISTRIBUTEON OF RUN LENGTHS
1 0.588 0.604 114 P(R = r) No. of observed
g 8]2153 0.236 a9 , Run Lengths (r) Observed Theoretical Runs
4 0.026 5-oas 23 1 0.658 0.633 104
5 0.010  0.013 3 2 0.241 0.222 38
6 . 2 3 0.089 0.087 14
0.005 0.007
1 4 0.006 0.035 i
5 0.006 0.015 1
6 0.000 0.005 0
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lengths to be accomplished due to the scarce nu

However, a mere inspection seems to indicate thgzeghgfmggé}s.
does reproduce the time persistence of the data. This asser-
tion is still more acceptable when one realizes that the pro-
portionally large differences between the observed and theore-
tical frequencies occur for long runs, where there is only a
handfull of observations, and of course where the reliabilit
of the observed freguencies is the lowest. Y

The second example is related to the simulati i

. i ation
part1c1es movement 1n sand channels. Hung (1975) condﬁzt:;ng;?
;ens1ve experimental as well as theoretical work on this topic:
1g labeled a sand particle with Cesium 137, which has a half-
2age ?E a?gﬁg 3g ¥§arsgdand 3tudied its displacement in a flume

. > « wide and 4 Tt. deep. Hung's first i-
mental run, which data will be used hereafter, had the $;?$g;in
2¥drau11c characteristics: discharge 12.39 c¢.f.s.; depth 1 ft .g
waume slope 1.667 x 10-3; Froude numer 0.273. The bed material
S coarse sand, With d50 = 1.12 mm and gradation = 1.57.

_ From the several variables studied by Hun i
tudinal displacement will be of interest %ere'nggl{h:hgtlgng1
Tength Xe Eg the length of the jump that the particle under-
went rnstaqtaneousTy" oh time t. The position of the par-
ticle as a function of time is illustrated by Fig. 3. The

t

[ 5 a
0 34t .__-__J__J——___*“_

At

Figure 3.
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Atys Atz,..., are called resting periods.

For the sake of this example the time axis was divided in-
to two minute cells and if two or more jumps had occurred it
the same cell they would be added up yielding a single value.
Therefore, the modified time series {X',} is a succession of
positive and zero observations, fitting'well, then, the frame-
work described in the previous sections.

The results obtained for the Hung's run 1-2 data are )
summarized in Table 3. The marginal fit was very good. In faet ©

P(xg > 7.216) = 0.615. An interesting fact was the low value

estimated for the serial correlation of the hypothetical
process {€.} :po= 0.039. This seems to suggest the hypothesis
that the outcome related to a time cell is independent of
the outcome of any other cell, i.e. Ho: p = 0.

In order.to test this hypothesis the asymptotic standard
deviation of p was found to be 0.11 and since the estimator is
asymptotically normally distributed the hypothesis cannot be -
rejected by any standards. Also, a generalized 1ikelihood-ratie-
test was performed yielding a statistic that under asymptotic- °
conditions is chi-square distributed with one degree of freedom/
The observed statistic was 0.126 and since .

P(x$ > 0.126) = 0.733 the null hypothesis cannot be rejected

again. Of course, the two above results are only valid for
"large samples". The question whether the particular sample at
hand is large enough to qualify to the asymptotic expression
will not be addressed in this paper.

b3 i )

—_

-

It is interesting to notice that if indeed the time cell
events are independént, then the resting periods will have a
geometric distribution, which is the discrete analog of the
exponential distribution. This confirms an assumption made pre--
vipusly by other investigators (listed by Hung). Also, the
distribution of run lengths will be geometric,

P(R=1r) = pr_] q, where for the particular case q = 0.914,
This was the expression used to calculate the theoretical va-
Jues in Table 3. Taking into consideration the issue of the
ill-reliability of the sample freequencies for the longer rums,
mentioned in the streamflow example, the agreement between the
observed and theoretical frequencies seems fair enough.

CONCLUSIONS
A model for intermittent processes has been presented. Its

application to the positive increments of daily runoff is en-
couraging enough to support the concept that the hydrograph
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Table 3

Results for the Single Particle Data

There are 1383 zero values in 1514 observations

Parameters: u = - 6,248 ¢ = 4.58]
p = 0.039 a = 1.823
Marginal fit of (X} — —m xs = 7.216
Class Frequency Class Frequenc
(feet) Observed Theoretical {feet) Observequheoieticai
- 0.0 0.913 0.914 1.6 - 1.8 0.008 0
0.0 - 0.2 0.001 0.002 1.8 -2.0 0.005 o:ggg
0.2 - 0.4 0.004 0.004 2.0 - 2.2 0.003 0.005
0.4 - 0.6 0.008 0.006 2.2 - 2.4 0.005 0.004
0.6 - 0.8 0.010 0.008 2.4 -2.6 0.002 0.002
0.8 - 1.0 0.007 0.009 2.6 - 2.8 0.0 0.002
1.0 - 1.2 0.013 0.010 2.8 - 3.0 0.00 0.00%
1.2 - 1.4 0.007 0.010 3.0 - 3.2 0.007 0.000
1.4 - 1.6 0.011 .009 3.2 - 3.4 0.001 0.000
Distribution of Run Lengths
P(R = r} No. of obs
Run Lengths (r} Observed Theoretical Runs erved
1 0.905 0.914 105
2 (.069 0.079 8
3 0.017 0.007 2
4 0.009 0.001 1
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rising and lowering limbs can be represented by different con-
ceptual models. The discharge events classified in the first
category (rising Timb) have low sensibility to the watershed
storage characteristics, and therefore can be accordingly mo-
deled. This is essentially what has been done in the first
examples of this paper. Of course, events that fall in the se-
cond category (recession) will have to be modeled with thé aid
of some physical knowledge about the watershed characteristics.

The model was also used for representing the bedload par-
ticle movement. For a particular set of data, it was found
that the events are serially independent. This suggests that
the power transformed truncated normal distribution, used to
fit the step Tength data, does not "a priori" present any ad-
vantage over some potential competitor. In fact more traditio-
nal distributions may even yield a better fit,
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APPENDIX

First and Second Derivatives of the Log-Likelihood Function

Define . .
5 [ﬂ%ﬂ S (tog vik,

where v is a dummy variable that can represent

T(vyi,d.k) =

L} L} n "

" i, n
x-i’ .V-laX.Y.i,and Z.i

=n3: 1f\)52

2
Nps Otherwise
£ = ~pv” ~ u(1-p)
2 1/2
s (1-0%)
and »
a0 = [ o0e) 'ate) e at
where o
¢ = i (p ot )72
o {1-p)
and 21(0,1,1 /2
- _ p : _ +
B(i) = 1(4,1 ”[W ~——)|72J (12)1(i#1,1,1) - 1(1,2,0)
i=0,1.

sl -2np 1(0,1,1) T(x;o,1,0) + T(¥30,1,0) - 2n,u

a o(1-0073(0,0,2) 5°(T+p)
172
“(1-p) T(z;1,0,0)  T(z;0,1,0) - hau
77 + 7
o (T+p) o
8-18
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Bl Znu 1(0,1,1) 20y +ng
3 o°(1-p) /(0,0,2) o

T(x30,2,2) + T{y30,2,0) - 2pT{xy;0,1,0)
+ 3 Vi
¢ (1-p")

Zu[zu-T(x,O 1,0) = T(y:0,1 0)]

g (1+p)

4 PT(251,1,0) + u(i o)T(z;1,0,0)
2 (1-p )1/2

T{z;0,2,0) - 2u%{z:0,1,0) + nsu

+
k)

Ll -aqu 1(0,1,1) ny 1(1,1,1) n,
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DISCUSSION

The basic assumption is that the intermittent process may Bé& "
considered to result from censoring a non-intermittent normal
autoregressive lag-one model. No physical justification of the
underlying non-intermittent process is attempted. In fact, the
main objective for introducing the imaginary process is a hope

poses.

For obtaining estimates of the model parameters on the basis of
a given time series of some intermittent process the max imum
Tikelihood procedure is applied. The 1ikelihood function for n
observations evaluated in a straightforward way would include

an n-fold integral of the multivariate normal p.d.f. This inte-
gral is not analytically available for n > 3. In order to avoid
this difficulty, the author assumes that the pairs of obserya-
tions (X, %,}. (X4, x }s (x5, Xs¥y +u... are independent, and
the corréspo%ding ?ike?ihood is §o be maximized, The author
claims that his experience with generated time series, i.e. in
situations when the population values are known, supports the
accuracy of the results yielded by the above simplifying approxi-
mation. It might, however, be questioned whether the relevance
of the assumption does not to some extent depend on the structy-
re of the involved processes? The assumption might f.i. be ex-
pected to be increasingly violated the larger the mean run-length
of the involved intermittent process, or what amounts to the
same the larger the time persistence. It is felt that this

point need a little more clarification, the more so that the
processes treated in the examples are all characterized by smail
mean run-lengths in the range of 1 to 2 time steps.

The proposed method for medeiling intermittent processes has the
advantage that it admits immediate known extensions to multiva-
riate situations, Theoretical results pertaining to this sitya-
tion are given in the paper. As was the case in the single-sta-
tion approach, some simplifying assumptions are necessary with
respect to the estimation procedure for the multivariate case.
Independence of the pairs of observations (X715 X4}y (Xpss X )
..... pertaining to station j and k are assu%éd +ﬁe reTééanc

of this assumption need to be investigated further with respect
to the influence of the time persistence properties of the in-
volved processes. In this connection, it is pointed out by the
author that for the proposed multivariate approach, the higher
than lag-zero cross-correlations of the historical processes
will not be reproduced by the synthetic traces.
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In the paper, only stationary processes are considered. However,
many processes are non-stationary e.g. due to seasonal varia-
tions. It would be of interest to know if it is possible to ex-
tend the suggested approach to the type of processes very often
encountered in nature, viz. processes composed of periodic and
stochastic components.

J. Kelman: Thank you professor Hansen for the review as well as
for the interesting comments.

I would Tike now to answer, the questions raised by the General
Reporter,

The first one deals with the estimation procedure. Professor
Hansen points out that the assumption of independence among
successive pairs of values might lead to wrong estimates in case
of strong dependence in the time series. I agree with that.
However, the question of how important this problem might be
depends also on the sample size. I have been applying this model
to rainfall data, which is in general characterized by Tong
samples, quite successfully. Also in the case of positive in-
crements of daily streamflow the results were encouraging. An
example of this last case is given in the paper. I do not dis-
pute the fact that in case of small samples with high time
persistence the model might not apply.

The second question deals with the fact that the stochastic pro-
cesses one wants to model are in general non-stationary. The
General Reporter asks how the model can be generalized to this
case. For the study of daily rainfall as well as streamfiow

I have used the same structure of the model, assuming, however,
that the parameters are periodic functions of time, rather than
constants. The results were satisfactory.

L.V, Tavares: Most methods developed to generate daily stream-
TTows do Tiot work well and I believe one of the reasons for this
is using the same process to simylate the rising limb and the
decreasing one of the generated hydrographs. In your paper you
present an application of your model to simulate the hydro-
graphs rising 1imbs. Perhaps if you build up a second model to
generate the hydrographs decreasing 1imbs you will achieve a
good daily streamflow simulation mode]. Are you planning to do
this?

d. Kelman: I am glad professor Tavares raised this question be-
cause 1t gives me the opportunity to discuss a point that I
consider of reievance in the modeling of streamflow sequences
with short time intervals. As mentioned in the text, the rea-
son for studying the positive increments of daily streamflow
stems from the conception that this intermittent stochastic
process resembles closely the physical process of direct-run-
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off. Professor Tavares raises the question of how the negative
increments should be modeled. My reasoning is that the negative:
increments, or equivalently the Towering Timbs of the hydrognqﬂrt
must transiate the physical process of thg emptying of theﬁqatgfﬁﬁ
shed storage. Therefore a way of hypqthes1z1ng a model of_the 5
negative increments is by stating which are the characteristicé
of the watershed storage. Elsewhere I have assumed the conceptual
representation of the watershed as two linear reservoirs. The
Jjoint use of the two intermittent and a1terna§1ng processes as

& dual model for daily streamflow yielded satisfactory resulps.

Reference: . . L
Stochastic Modeling of Intermittent Daily Hydro]og1c.5er1gs,
Jerson Kelman, Ph.D. dissertation, Colorado State University,
1976.

K.W. Hipel: When determing a stochastic model for a particular
data set, it is recommended to follow the identification, estima-
tion and diagnostic check stages of model development. (Box and
denkins, 197Q; Box and Tiao, 1973). By fixing the one component
to be Markovian (i.e. autoregressive lag one_procgss), the L
author precludes the necessity of having to identify a part)pu—
Tar autoregressive-meving average {ARMA) model from the general
family of ARMA models. Can the author's method be generalized

so that the best ARMA model is employed in place of the Markov
component?

The &, white noise term is assumed to be independent, normally
distributed, and homoscedastic. Applied statisticians stress

the importance of satisfying the independence assumption. In

the applications presented in the paper, were diagnostic checks
performed to determine whether or not the independence assump-
tion was satisfied? Although the normality and homoscedastic
properties are generally not as important as the independence
criterion, did the author also check whether or not these assump-
tions for the white noise term were reasonably well satisfied?

References:

Box, G.E.P, Jenkins, G.M., Time Series Analysis: Forecasting and
Control, Holden-Day, San Francisco, California, USA, 1970.

Box, G.E.P, and Tiao, G.C., Bayesian Inference in Statistical
Analysis, Addison-Wesley, Reading, Mass., USA, 1973.

J. Kelman: Thank you Dr. Hipel for the two stimulating questions,
The Tirst one deals with the problem of model identification.
This stage wasskipped in the present study due to the lack of
competitor models for the intermittent process. The main purpose
of the paper is to introduce a new model, rather than selecting
the “best" model for a particular set of data. However, as Dr.
Hipel points out, suitable competitors could be found by assuming
different characteristics for the Mt—process, Tike for example
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the referred ARMA model. In fact there is no impediment in the
intermittent model for the use of any linear model for the M,-
process. Therefore, the method can be generalized in the dirdc-
tion suggested by Dr. Hipel.

The second gquestion is related to the properties of the time
series {g.}. Here the same symbol is used either representing
the stoch%stic process or the corresponding time series. I must
clarify the point that it is not possible to get the time
series {M.} as well as {£.} given the raw sequence {X,}. The
fact is tﬁat whenever an gutcome of X, is egqual to ths trunca-
tion value, one only knows that the cgrresponding value of

M, is smaller than the truncation value. How much smaller one
dges not know. In other words, figure 1 ilustrates the genera-
tion procedure, but the arrows can not be inverted to find
final product the white noise, given as input the observed in-
termittent process. Therefore the procedure suggested by

Dr. Hipel for the testing of the fitness of the model can not
be applied. Instead, I have compared the sample distributions
of several functionals obtained from the historic series with
their counterparts obtained from generated sequences, The
latter were produced by the proposed model. ATthough somehow
deficient, this procedure gives a measure of the adequacy of
the model to produce results of practical significance.
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